此外,研究还表明,哺乳动物在清醒状态下的神经元活动会诱导神经元 DNA 双链断裂,同时神经元中 DNA 的损伤修复会比正常分裂细胞慢,从而导致损伤持续积累。而睡眠状态会降低 DNA 损伤水平。
因此,研究人员猜测 DNA 损伤的积累到一定阈值或许是触发哺乳动物睡眠的“驱动因素”。为了验证这一猜测,Appelbaum 教授带领的研究团队首先对斑马鱼进行研究,通过辐射、药理学以及光遗传学手段在斑马鱼中诱导神经元 DNA 损伤。之所以选择斑马鱼,是因为斑马鱼具有透明的、睡眠模式与人类相似的、简单的大脑,方便进行研究。
(来源:巴伊兰大学)
结果发现,随着 DNA 损伤的增加,斑马鱼对于睡眠的需求也增加了。同时,研究人员还发现,一旦 DNA 损伤积累超过最大阈值时,斑马鱼就会进入睡眠状态,随后神经元 DNA 损伤就会减少。
同时,研究人员也发现,斑马鱼至少需要 6 个小时的睡眠来修复 DNA 损伤,如果睡眠时间不足,DNA 损伤就无法被充分修复,斑马鱼白天也会继续睡觉。
既然,DNA 损伤的积累是驱动大脑睡眠的关键因素,那么它又是如何驱动大脑进入睡眠状态并进行 DNA 损伤修复的呢?
蛋白质 PARP1 是 DNA 损伤修复中一种非常重要的物质,可以标记细胞中 DNA 损伤的位点并招募相关 DNA 损伤修复蛋白前来修复受损位点。
随后,在斑马鱼体内研究人员证实,通过遗传或药理学手段增加 PARP1 表达可以促进斑马鱼睡眠,并增强睡眠依耐性 DNA 损伤的修复。相反,抑制 PARP1 蛋白活性,不仅会阻止 DNA 损伤修复,即使当斑马鱼神经元 DNA 损伤超过阈值,斑马鱼也不会意识到疲倦进入睡眠状态。也就是说,PARP1 蛋白是大脑感知 DNA 损伤并驱动睡眠的关键因素。