项目名称: 基于人工神经网络的电阻开关型电子突触器件的研究

项目编号: No.61273310

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 自动化技术、计算机技术

项目作者: 李树玮

作者单位: 中山大学

项目金额: 84万元

中文摘要: 计算机技术经过几十年的快速发展已经具有强大的运算能力,但仍然远远赶不上人类的智能。模仿生物神经系统开发人工智能的神经工程学却给人们带来了新的希望。研究人员已经能够利用超大规模集成电路技术制备出人造电子神经元。人造神经网络和仿生智能系统的建立还需要另外一种基本器件-人造电子突触。近年来出现的电阻开关技术有望成为实现电子突触的关键技术。我们使用MBE设备外延生长金属氧化物,在原子尺度上操纵生长出新的功能材料,利用先进的测试手段对材料进行表征,研究外延生长的尺寸效应,研究电阻开关器件的物理机制和影响器件的各种因素进行深入全面的研究。解决这些问题,寻找合适的材料,设计电阻开关电子突触器件并优化器件性能。电子突触期待的尺寸、效率希望接近生物突触。寻求制备人造电子突触的系统理论和工艺技术并制备一系列电子突触器件,同时建立电子突触综合性能的表征和评价体系。

中文关键词: 电子开关;电子突触;人工神经网络;金属氧化物;分子束外延

英文摘要: Even though computers nowadays have ultrahigh calculating power after decades of development, they still cannot reach human intelligence. The new hope is brought by the field of neuromorphic engineering, which tries to achieve artificial intelligence by emulating neurobiological systems. Research communities in the field have invented electronic neurons by virtue of very-large-scale-integration (VLSI) technology. However, manufacturing neuromorphic circuits still needs the other basic device - electronic synapse. Fortunately, resistive switching appearing in recent years will maybe provide practical electronic synapses for us. We grow high quality thin films of metal oxides by molecular beam epitaxy method, which can subtly control the structures and the composition of the materials in the atomic scale. We also investigate the materials by advanced equipments and methods to understand the structures, composition, electronic structures, optical properties, and so on. In this research, the physic mechanism behind the resistive switching phenomenon will is studied. The insightful and systematic understanding to the factors affect the characteristics of resistive switching devices. Finding the underlying mechanism, choosing appropriate materials, designing excellent electronic synapses, and optimizing device perfor

英文关键词: resistive swiching;electronic synapses;artifical neural network;metal oxides;moleculer beam epitaxy

成为VIP会员查看完整内容
0

相关内容

深度神经网络 FPGA 设计进展、实现与展望
专知会员服务
57+阅读 · 2022年3月26日
专知会员服务
39+阅读 · 2021年9月7日
专知会员服务
43+阅读 · 2021年8月5日
专知会员服务
31+阅读 · 2021年5月7日
【经典书】数理统计学,142页pdf
专知会员服务
94+阅读 · 2021年3月25日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
29+阅读 · 2020年12月14日
机器直觉
专知会员服务
26+阅读 · 2020年11月22日
【Cell 2020】神经网络中的持续学习
专知会员服务
59+阅读 · 2020年11月7日
全新量子充电技术:最快9秒充满一辆电动汽车?
大数据文摘
0+阅读 · 2022年3月22日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
57+阅读 · 2022年1月5日
小贴士
相关VIP内容
深度神经网络 FPGA 设计进展、实现与展望
专知会员服务
57+阅读 · 2022年3月26日
专知会员服务
39+阅读 · 2021年9月7日
专知会员服务
43+阅读 · 2021年8月5日
专知会员服务
31+阅读 · 2021年5月7日
【经典书】数理统计学,142页pdf
专知会员服务
94+阅读 · 2021年3月25日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
29+阅读 · 2020年12月14日
机器直觉
专知会员服务
26+阅读 · 2020年11月22日
【Cell 2020】神经网络中的持续学习
专知会员服务
59+阅读 · 2020年11月7日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员