Untrusted deserialization exploits, where a serialised object graph is used to achieve denial-of-service or arbitrary code execution, have become so prominent that they were introduced in the 2017 OWASP Top 10. In this paper, we present a novel and lightweight approach for runtime prevention of deserialization attacks using Markov chains. The intuition behind our work is that the features and ordering of classes in malicious object graphs make them distinguishable from benign ones. Preliminary results indeed show that our approach achieves an F1-score of 0.94 on a dataset of 264 serialised payloads, collected from an industrial Java EE application server and a repository of deserialization exploits.
翻译:使用一个序列式物体图实现拒绝使用或任意执行代号的不可靠消毒利用已变得如此突出,以致于2017年的OSASP前10年采用了这种利用。在本文件中,我们提出了一个利用Markov链链进行脱毒攻击运行时的新型和轻量级预防方法。我们工作背后的直觉是,恶意物体图中的分类特征和顺序使其与良性图有区别。初步结果确实表明,我们的方法在264个序列式有效载荷的数据集上达到了0.94的F1核心,该数据集来自一个工业型Java EE应用服务器和一个消毒利用库。