项目名称: 基于光学谐振腔的大面积冷原子束干涉技术及其惯性效应研究

项目编号: No.61473166

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 自动化技术、计算机技术

项目作者: 冯焱颖

作者单位: 清华大学

项目金额: 86万元

中文摘要: 原子干涉技术为惯性力测量提供了极端灵敏和精确的工具,在惯性导航、地球物理学和基础物理学研究等领域显示出日益重要的影响。本项目研究基于冷原子束和光学谐振腔的大面积原子干涉方法及其在惯性测量方面的应用。主要研究内容为基于光学谐振腔的大动量传输的原子波包相干操控技术:理解光学谐振腔对相干操控激光波前及原子波包动量分离的影响机制,研究基于这种新的原子相干操控方法的冷原子束干涉效应。我们希望通过光学谐振腔与原子波包操控激光的模式匹配,能够有效降低激光波前扭曲这一重要的原子干涉相位噪声;也希望通过激光光子在高精细度光学谐振腔内的多次作用,可以将当前大动量原子分束器所需的激光功率降低1-2个量级,从而实现低功率要求的大面积原子干涉仪,突破原子干涉仪的灵敏度极限。这项研究旨在探索一种高带宽、小型化和低功率的高精度原子干涉惯性测量方法,为当前制约原子干涉惯性技术存在的数据率低和小型化难的基本问题提供解决方案

中文关键词: 惯性导航;原子干涉;冷原子束;光学谐振腔;大动量分束器

英文摘要: Atom interferometry(AI) provide a tool for measuring inertial forces with extreme sensitivity and accuracy, which is playing more and more important roles in many fields like inertial navigation, Gradiometry, Geophysics and fundamental physics. This report proposes a novel AI with large enclosed area, base on a cold atom beam source and optical cavity for coherently manipulating atomic wavepackets. It's application in inertial sensors will also be explored. Major research interest will be focused on the mechanism, on which the interaction between atoms and light throuth a high-finissee cavity may produce the coherent manipulation of atomic wavepackets with a large momentum transfer and the wavefront of the manipulating light beams can be changed. The interest will be also placed on a cold atomic beam interferometry with the cavity-based large momentum beamsplitter and its inertial effects. The mode matching between the light and the optical cavity may allow one to reduce the noise from wavefront twist of the beamsplitter laser beam,which used to be a major limitation for improving the sensitivity of a cold atom interferometer. Multiple bounces back and forth of the manipulating photons inside the optical cavity and their interaction with the atoms may allow the the power of a large momentum transfer beamsplitter for constructing a large area atom interferometer to be reduced to the order of 10mW~100mW, as may make possible a large area atom interferometer with low power consumption or a more sensitive atom interferometer. Such research is expected to give a solution to the problem of the low date rate and difficulty of miniaturization faced with by the present AI-based inertial measurement technologies, and present a AI- based inertial sensor with a high bandwith and compact size.

英文关键词: Inertial Navigation;Atom Interferometry;Cold Atomic Beam;Optical Cavity;Large Momentum Beam Splitter

成为VIP会员查看完整内容
0

相关内容

专知会员服务
37+阅读 · 2021年5月9日
专知会员服务
31+阅读 · 2021年2月17日
专知会员服务
42+阅读 · 2021年2月8日
专知会员服务
29+阅读 · 2021年1月9日
专知会员服务
77+阅读 · 2020年12月6日
专知会员服务
105+阅读 · 2020年10月31日
3D目标检测进展综述
专知会员服务
191+阅读 · 2020年4月24日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
小芯片大安全:数字隔离器的前世今生
中国科学院自动化研究所
0+阅读 · 2021年3月16日
自动驾驶车载激光雷达技术现状分析
智能交通技术
17+阅读 · 2019年4月9日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月30日
Arxiv
14+阅读 · 2021年8月5日
Arxiv
19+阅读 · 2020年12月23日
Arxiv
23+阅读 · 2020年9月16日
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
小贴士
相关VIP内容
专知会员服务
37+阅读 · 2021年5月9日
专知会员服务
31+阅读 · 2021年2月17日
专知会员服务
42+阅读 · 2021年2月8日
专知会员服务
29+阅读 · 2021年1月9日
专知会员服务
77+阅读 · 2020年12月6日
专知会员服务
105+阅读 · 2020年10月31日
3D目标检测进展综述
专知会员服务
191+阅读 · 2020年4月24日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
微信扫码咨询专知VIP会员