时区团队(Team Time Zone)应用系统工程分析方法研究DON AI/ML开发人员的数据需求,并开发和评估一个概念性的系统解决方案,以解决这一数据挑战,并最终支持DON未来的数字准备,以解决复杂的任务。该团队通过采访三个不同的海军任务领域的主题专家(SME)来进行利益相关者的需求分析:系统维护、物理安全和战备。这三个任务被认为是 "数据提供者"的代表。此外,该团队还采访了数据研究人员和AI/ML科学家,以了解他们的数据需求。访谈为团队提供了基于独特和不同领域和经验的关注、挫折、经验教训和挑战的洞察力。从数据提供者的角度来看,反复出现的主题包括所有权的划分、信息保障的需要、数据未被收集或存储的情况以及对可访问性的担忧。从数据用户的角度来看,明显的轶事包括寻找数据的耗时,承诺的数据并不总是能够实现,以及即使在获得数据后,理解数据的背景也是至关重要的。该小组根据利益相关者的访谈和信息收集工作,为DON AI/ML制定了一套数据要求。DON AI/ML的数据需求是:
数据必须能够被外部组织访问。
数据必须被翻译成与其领域应用兼容的标准格式。
数据必须有确定的所有者。
数据必须伴随着描述性的元数据。
数据必须有标准化的管理。
数据必须以其 "最低标准"的形式被访问。
数据必须具有保护和适当共享的安全性。
数据必须具有混淆性,以保护个人身份信息(PII)。
数据必须伴有背景信息。
为了解决DON数据研究人员和AI/ML科学家确定的数据需求,Team Time Zone开发了一个中央AI库(CAIL)系统的概念设计,作为解决方案。CAIL系统的目的是简化 DON内部的数据访问和管理,以支持AI/ML系统的开发。CAIL系统旨在减少访问数据的时间(和相关费用),腾出更多时间用于AI/ML系统的实际开发、培训和评估。该团队提出,为了满足未来计划的访问和整合要求,CAIL需要成为一个 "数据云"。图1是CAIL的OV-1;它描述了为AI/ML开发简化DON数据访问和管理的拟议过程。图1. CAIL OV-1该团队根据六个主要类别制定了CAIL系统要求:数据准备、数据偏差、数据整理、数据分类、数据治理和数据安全。每一个类别都是针对利益相关者分析过程中发现的需求。CAIL系统将主要与外部联合数据、数据库、文件和权威数据生产商/供应商的内容对接。它将像 "谷歌 "一样为DON用户寻找数据。数据将是结构化的,并将伴随着元数据(关于数据的描述性信息),使数据可以被搜索。一个管理数据的社区将提供规则来管理对数据的安全访问和授权。在利益相关者的分析中,很明显,在访问数据之前需要进行一些重要的活动。AI/ML开发人员解释了了解数据收集方式、数据来源以及其他有关数据的特定领域的背景方面的重要性。Team Time Zone将这些过程指定为 "预CAIL活动",并将其作为整个CAIL过程的一部分。Team Time Zone进行了成本分析,以估计为DON实施CAIL系统的成本。该团队使用了两种方法来估计成本:传统的成本估计和基于模型的系统工程(MBSE)方法。该小组估计CAIL系统的成本(基于传统的成本估算)为3380万美元,持续时间为5年,每年的重复维持成本为400万美元。团队估算的CAIL系统成本(基于MBSE方法),在运行了一万次蒙特卡洛模拟后,平均为3290万美元,持续时间为5年。运营和维护模型的平均成本为每年440万美元。表1显示了CAIL开发和维护成本的摘要。表1. CAIL系统成本汇总为了使DON的AI/ML项目蓬勃发展,并在未来几十年内实现AI/ML的进步,DON必须确保数据的管理,并使AI/ML的发展能够被访问。Team Time Zone提出的CAIL系统解决方案将为AI/ML项目提供一个单一来源的综合数据环境,以访问存储在整个DON各种数据库中的数据库目录。Team Time Zone建议海军实施CAIL系统,通过确保AI/ML开发者访问持久和动态的数字数据来支持数字准备。CAIL系统支持DON项目和开发人员的协调方法,以安全访问数据。该小组建议超配项目(Project Overmatch)考虑这些发现并实施CAIL系统和流程,以确保海军的数据可用性和质量。该小组开发了一个CAIL标志(见图2),表明CAIL系统是海军的一个重要基础。图2:CAIL标志。改编自美国海军标志。
这个顶点项目的主要目标是分析 DON AI/ML 开发的数据需求,并开发一个概念性的解决方案来解决数据需求。其他目标是
研究AI/ML方法如何在DON任务中应用。
了解数据需求在DON任务中是否有普遍的标准,或者数据需求在DON任务中是否有差异。
制定一套 DON AI/ML利益相关者的要求。
为一个支持DON AI/ML数据需求的系统制定一个概念性设计。
研究实施概念解决方案系统的潜在成本和进度效益。
D. 项目团队和组织
时区团队由五个具有不同学术和专业经验的NPS系统工程学生组成。该团队由以下人员组成。
Robert French于2016年毕业于Old Dominion大学,获得了计算机工程和电子工程的学士学位。他目前是位于弗吉尼亚州弗吉尼亚海滩的海军水面作战中心Dahlgren分部-Dam Neck附件的特殊传感器技术部门的R.F.工程师。罗伯特也是美国舰队司令部海上作战中心N6(信息系统)的高级入伍领导(USNR)。他曾在现役中担任电子技术员超过14年,并成为现役预备役军人达9年之久。