2017年机器学习几大主要进展汇总!

2018 年 1 月 11 日 全球人工智能 Xavier Amatriain


-欢迎加入AI技术专家社群>>

- 日薪5K-10K招兼职AI讲师>>

摘要: 2017年注定是机器学习快速发展的一年,特别是机器学习商业化的成功是的更多的人积极的投入到机器学习的学习当中。机器学习一定会成为未来的技术,让我们看看这项未来的技术现在发展到何种程度。


很难相信在人工智能和机器学习领域里这一年发生了那么多的事情,很难做一个全面的系统的汇总。尽管如此,我还是尝试性的去做了一个汇总,希望能够帮助大家去回顾一下今天的科技到底发展到了何种程度。

1.Alpha Go Zero:创造者的兴起

如果让我必须选择今年的主要亮点,那就是AlphaGo Zero论文)。这种新方法不仅在一些最有希望的方向上有所改进(如深度强化学习),而且也证实了这种模式可以在没有数据的情况下学习的范式转变(译者认为:这是思想的转变,在商业上,给了那么些没有大量数据的创新者一个机会)。我们最近也看到了Alpha Go Zero正在推广到象棋类的其他游戏。

2.GAN:不要怕,就要GAN

最近的一元研究meta-study发现在GAN相关研究文的告指上存在系错误。尽管如此,不可否的是,GAN继续发挥着它的独到之处,特别是当涉及到图像空间的应用时(例如渐进式GANpix2pix中的条件GANSCycleGans)。

3.深度学习版的NLP:商业化的开端

今年的深度学NLP的天下,特是翻NLP感受到了翻正在简单容易Salesforce提供了一个有趣的非自回方法,可以理完整的句子翻。也更具开性的是Facebook提供的督的方法UPV。深度学也成功的帮助商家推荐系做的更佳的完美。然而,最近的一篇最近的一些展提出了疑,例如kNNDeep Learning相比有多么简单。与GAN研究一,人工智能研究的惊人速度也会致科学严谨性的失,也不足奇。然人工智能的多或大部分展来自深度学习领域,但AIML方面许多其他方面的不断新也应该人关注的。

4.理论的问题:可解释性和严密性

与上面提到的一些问题有些相关的是,多人批评这种方法的理缺乏密性和可解性。就在前不久,阿里·拉希米(Ali Rahimi)在他的NIPS 2017谈话中将AI描述炼金术” Yann Lecun在一不可能很快解决的辩论中迅速作出了回得注意的是,今年在尝试深度学的基上,已看到了很多的努力。例如,研究人正在试图了解神如何深度泛化Tishby信息瓶也在今年作为对某些深度学属性的合理解释进行了长时间辩论。正在今年的职业生涯祝的辛也一直在质疑诸如使反向播的基本问题。佩德·多明戈斯(Pedro Domingos)等知名研究人很快奏,开了使用不同优化技术的深度学方法。Hinton提出的最后一个最近的根本性化是使用(capsule)胶囊原文)作的替代品。

5.服务商的战斗:越来越好的开发体验

如果我们看一下人工智能的工程相关的成果,那么一年来,Pytorch开始挑起热潮,成为Tensorflow的真正挑战,特别是在研究方面。Tensorflow通过在Tensorflow Fold发布动态网络迅速作出反应。大玩家之间的“AI之战”还有很多其他的战斗,其中最激烈的就是围绕着云。所有的主要供应商都已经加紧了,增加了他们在云中的AI支持。亚马逊已经呈现在他们的AWS,大创新,如他们最近的表现Sagemaker构建和部署ML车型。另外值得一提的是,更小的玩家也纷纷涌入.Nvidia最近推出了他们的GPU,这是训练深度学习模式的另一个有趣的选择。所有的这些战斗无疑在未来都将大力推动工业升级。另外,新的ONNX神经网络表示标准化是互操作性的重要和必要的一步。

6.始终有待解决的未来的社会问题

2017年,人工智能方面的社会问题也得到了延续(升级)。伊隆·马斯克(Elon Musk)继续推动我们越来越接近杀手级AI的想法,令许多人感到沮丧。关于人工智能在未来几年会如何影响工作,也有很多讨论。最后,我们看到更多的焦点放在AI算法的可解释性和偏见上。

7.新的战场:机器学习+传统行业

最近几个月来,我一直在从事医学和医方面的人工智能方面的工作。我很高地看到,像保健这样的传统领域的创新速度正在被迅速提高AIML经应用于医学多年,从60年代和70年代的家系叶斯系开始。不,我发现自己引用了几个月前的文章。今年提出的一些最近的新包括使用Deep RLGAN或自编码器来帮助患者断。最近人工智能的集中在精准医学(高度个性化的医疗诊断和治)和基因学上。例如David Blei最新文章使用叶斯推断来预测个体是否具有疾病的遗传倾向,从而解决神模型中的因果关系。所有的大公司都投人工智能在医保健域。Google有几个团队,其中包括Deepmind Healthcare,他在医学人工智能方面提出了一些非常有趣的展,特是在医学影像自化方面。另外,苹果公司也在苹果手表找医保健用程序,而亚马逊也秘密地投于医保健。很明新的空成熟。

Uber AI团队在深度化学的背景下提出了使用遗传算法(GA)的非常有趣的想法。在5文中,团队展示了GA如何成SGD的一个争性替代方案。看到GA复出是件非常有趣的事情,我很高看到在未来几个月里它可以把我们带到哪里。

最后,我最近阅读了关于Libratus如何在挑无限扑克(IJCAI早期论文的一个版本)上击败专的科学。而AlphaGo Zero是一个非常令人兴奋展,事现实中的大多数问题可以更容易地被吸收到像Poker这样的不完善的信息游戏,而不是像GoChess这样的完美信息游戏这就是为什么在这个领域的工作是一个真正令人兴奋的重要推动领域前进。除了上面提到科学文之外,我还建议你去阅读以下两个在不完全信息游中自我玩的深度化学,以及DeepStack人工智能在挑无限制扑克中的。(来自:云栖社区翻译)

↓ 点击阅读原文,进入学院

登录查看更多
3

相关内容

AlphaGo Zero是谷歌下属公司Deepmind的新版程序。从空白状态学起,在无任何人类输入的条件下,AlphaGo Zero能够迅速自学围棋,并以100:0的战绩击败“前辈”。 2017年10月19日凌晨,在国际学术期刊《自然》(Nature)上发表的一篇研究论文中,谷歌下属公司Deepmind报告新版程序AlphaGo Zero:从空白状态学起,在无任何人类输入的条件下,它能够迅速自学围棋,并以100:0的战绩击败“前辈”。Deepmind的论文一发表,TPU的销量就可能要大增了。其100:0战绩有“造”真嫌疑。
最新《可解释深度学习XDL》2020研究进展综述大全,54页pdf
3D目标检测进展综述
专知会员服务
193+阅读 · 2020年4月24日
NLP基础任务:文本分类近年发展汇总,68页超详细解析
专知会员服务
58+阅读 · 2020年1月3日
【推荐系统/计算广告/机器学习/CTR预估资料汇总】
专知会员服务
88+阅读 · 2019年10月21日
自动机器学习:最新进展综述
专知会员服务
120+阅读 · 2019年10月13日
深度学习自然语言处理综述,266篇参考文献
专知会员服务
231+阅读 · 2019年10月12日
2019年迄今最佳深度学习研究进展汇总
深度学习与NLP
16+阅读 · 2019年5月6日
【干货】GAN最新进展:8大技巧提高稳定性
GAN生成式对抗网络
31+阅读 · 2019年2月12日
【机器学习】机器学习:未来十年研究热点
产业智能官
16+阅读 · 2018年11月4日
2017年深度学习总结:文本和语音应用
专知
3+阅读 · 2018年2月4日
机器学习新手必看10大算法
深度学习世界
4+阅读 · 2018年2月1日
深度 | 致开发者:2018 AI发展趋势
机器之心
4+阅读 · 2018年1月11日
2017深度学习NLP进展与趋势
全球人工智能
5+阅读 · 2017年12月19日
2017上半年无监督特征学习研究成果汇总
北京思腾合力科技有限公司
4+阅读 · 2017年9月15日
Arxiv
7+阅读 · 2019年4月8日
Logically-Constrained Reinforcement Learning
Arxiv
3+阅读 · 2018年12月6日
3D-LaneNet: end-to-end 3D multiple lane detection
Arxiv
7+阅读 · 2018年11月26日
Deep Reinforcement Learning: An Overview
Arxiv
17+阅读 · 2018年11月26日
Arxiv
5+阅读 · 2018年5月22日
VIP会员
相关资讯
2019年迄今最佳深度学习研究进展汇总
深度学习与NLP
16+阅读 · 2019年5月6日
【干货】GAN最新进展:8大技巧提高稳定性
GAN生成式对抗网络
31+阅读 · 2019年2月12日
【机器学习】机器学习:未来十年研究热点
产业智能官
16+阅读 · 2018年11月4日
2017年深度学习总结:文本和语音应用
专知
3+阅读 · 2018年2月4日
机器学习新手必看10大算法
深度学习世界
4+阅读 · 2018年2月1日
深度 | 致开发者:2018 AI发展趋势
机器之心
4+阅读 · 2018年1月11日
2017深度学习NLP进展与趋势
全球人工智能
5+阅读 · 2017年12月19日
2017上半年无监督特征学习研究成果汇总
北京思腾合力科技有限公司
4+阅读 · 2017年9月15日
相关论文
Arxiv
7+阅读 · 2019年4月8日
Logically-Constrained Reinforcement Learning
Arxiv
3+阅读 · 2018年12月6日
3D-LaneNet: end-to-end 3D multiple lane detection
Arxiv
7+阅读 · 2018年11月26日
Deep Reinforcement Learning: An Overview
Arxiv
17+阅读 · 2018年11月26日
Arxiv
5+阅读 · 2018年5月22日
Top
微信扫码咨询专知VIP会员