【WWW2021】少样本图学习分子性质预测

2021 年 2 月 20 日 专知


图神经网络最近的成功极大地促进了分子性质的预测,促进了药物发现等活动。现有的深度神经网络方法通常对每个属性都需要大量的训练数据集,在实验数据量有限的情况下(特别是新的分子属性)会影响其性能,这在实际情况中是常见的。为此,我们提出了Meta-MGNN,一种新颖的预测少样本分子性质的模型。Meta-MGNN应用分子图神经网络学习分子表示,建立元学习框架优化模型。为了挖掘未标记的分子信息,解决不同分子属性的任务异质性,Meta-MGNN进一步将分子结构、基于属性的自监督模块和自关注任务权重整合到Meta-MGNN框架中,强化了整个学习模型。在两个公共多属性数据集上进行的大量实验表明,Meta-MGNN优于各种最先进的方法。


https://arxiv.org/abs/2102.07916


专知便捷查看

便捷下载,请关注专知公众号(点击上方蓝色专知关注)

  • 后台回复“FSGL” 可以获取《【WWW2021】少样本图学习分子性质预测》专知下载链接索引

专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取5000+AI主题干货知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程资料和与专家交流咨询
点击“ 阅读原文 ”,了解使用 专知 ,查看获取5000+AI主题知识资源
登录查看更多
1

相关内容

专知会员服务
68+阅读 · 2021年4月27日
专知会员服务
37+阅读 · 2021年4月25日
专知会员服务
39+阅读 · 2021年4月5日
【WWW2021】双曲图卷积网络的协同过滤
专知会员服务
39+阅读 · 2021年3月26日
【WWW2021】场矩阵分解机推荐系统
专知会员服务
31+阅读 · 2021年2月27日
【WWW2021】自监督学习上下文嵌入的异构网络链接预测
专知会员服务
39+阅读 · 2021年2月10日
【WWW2021】多视角图对比学习的药物药物交互预测
专知会员服务
53+阅读 · 2021年1月29日
【WWW2021】通过异构GNN知识保留的增量社会事件检测
专知会员服务
20+阅读 · 2021年1月24日
专知会员服务
37+阅读 · 2020年11月24日
【WSDM2021】拓扑去噪的鲁棒图神经网络
专知会员服务
26+阅读 · 2020年11月14日
【KDD2020】图神经网络生成式预训练
专知
22+阅读 · 2020年7月3日
注意力图神经网络的多标签文本分类
专知
8+阅读 · 2020年3月28日
Interest-aware Message-Passing GCN for Recommendation
Arxiv
12+阅读 · 2021年2月19日
Arxiv
21+阅读 · 2019年8月21日
Deep Graph Infomax
Arxiv
17+阅读 · 2018年12月21日
Arxiv
8+阅读 · 2018年3月17日
Arxiv
7+阅读 · 2018年1月10日
VIP会员
相关VIP内容
专知会员服务
68+阅读 · 2021年4月27日
专知会员服务
37+阅读 · 2021年4月25日
专知会员服务
39+阅读 · 2021年4月5日
【WWW2021】双曲图卷积网络的协同过滤
专知会员服务
39+阅读 · 2021年3月26日
【WWW2021】场矩阵分解机推荐系统
专知会员服务
31+阅读 · 2021年2月27日
【WWW2021】自监督学习上下文嵌入的异构网络链接预测
专知会员服务
39+阅读 · 2021年2月10日
【WWW2021】多视角图对比学习的药物药物交互预测
专知会员服务
53+阅读 · 2021年1月29日
【WWW2021】通过异构GNN知识保留的增量社会事件检测
专知会员服务
20+阅读 · 2021年1月24日
专知会员服务
37+阅读 · 2020年11月24日
【WSDM2021】拓扑去噪的鲁棒图神经网络
专知会员服务
26+阅读 · 2020年11月14日
相关论文
Interest-aware Message-Passing GCN for Recommendation
Arxiv
12+阅读 · 2021年2月19日
Arxiv
21+阅读 · 2019年8月21日
Deep Graph Infomax
Arxiv
17+阅读 · 2018年12月21日
Arxiv
8+阅读 · 2018年3月17日
Arxiv
7+阅读 · 2018年1月10日
Top
微信扫码咨询专知VIP会员