在过去的一段时间内,我通过不断的深入学习,成长为一名不错的机器学习从业者。为此我接受了一个小时的访谈,以此来总结我学习的历程。学习机器学习主要有两种方法:理论机器学习方法和应用机器学习方法。
理论机器学习
对于学习机器学习的理论方法,下面的课题应该进行深入的研究。
1.线性代数 - MIT,IISc班加罗尔。
2.微积分 - 基础,Coursera,高级,Coursera。
3.概率和统计 - 麻省理工学院。
4.统计学习理论 - 麻省理工学院,斯坦福。
5.机器学习 - Coursera,Caltech。
接着就是阅读和研究论文,实施研究工作/新算法,发展专业知识,并进一步选择专业化的研究路径。
应用机器学习
应用机器学习需要条件。
1.对上述科目的基础知识(1至4)很好的理解。
2.Python或R编程语言,根据您的偏好。
3.学习使用所选编程语言中流行的机器学习、数据操作和可视化库。我个人使用Python编程语言,因此我将在下面详细说明。
4.必须知道Python库: numpy,pandas, scikit-learn, matplotlib
5.其他流行的Python库: LightGBM, XGBoost, CatBoost
速成机器学习方法
如果你想了解什么是机器学习和它可能是什么样的。你可以通过这种方式进行实验,快速掌握。
1.了解机器学习概念概述
2.学习Python或R
3.了解并学习使用您选择的语言使用流行的库
Python环境设置
1.Python
1.1:Python.org 下载,学习
1.2:Anaconda 下载,学习
2.代码编辑器/ IDE
2.1:Visual Studio代码(搜索并安装Python扩展,选择最下载的一个)
2.2:Notepad+ +
2.3:Jupyter(与Anaconda 一起安装)
3.安装python包
3.1:使用python的本地工具管理软件包:pip install <package-name>
3.2:用anaconda管理软件包:conda install <package-name>
4.管理Python(本地)虚拟环境(如果需要多个环境)
4.1:创建虚拟环境:python -m venv c:path oenvolder
4.2:命令帮助:python -m venv -h
4.3:切换环境:activate.bat位于虚拟环境文件夹中的脚本
4.4:Python(本地)虚拟环境文档
5.管理Anaconda虚拟环境(如果需要多个环境)
5.1:默认conda环境 - root
5.2:列出可用的环境 - conda env list
5.3:创造新的环境 - conda create --name environment_name
5.4:切换到环境 - activate environment_name
5.5:Anaconda虚拟环境文档
机器学习概念概述
机器学习:是一种通过函数f(x)从大量数据中找到模式的方法,该函数有效地推广到看不见的x,从而在未被看到的数据中找到学习模式,并使机器学习模型得到训练。
数据集:数据被用于应用机器学习,并从中找到模式。对于监督式机器学习应用程序,数据集包含 x (输入/属性/自变量)和 y(目标/标签/因变量)数据。对于无监督的数据,它只是 x,输入和数据的输出是某种学习模式。
Train set(数据集):数据集的一个子集,用于(训练)机器学习算法以学习模式。
评估/验证/交叉验证集:数据集的子集,不在训练集中,用于评估机器学习算法的工作方式。
测试集:数据集检验学习成果。对于监督问题,训练集合测试集不能相同。对于无人监督,训练和测试集可以是相同的。
算法类型:
监督学习:在监督问题中,历史数据包括需要为将来/不可见数据预测的标签。例如,对于房屋价格预测,我们有关于房屋(面积,卧室数量,位置等)和价格的数据。在对具有给定数据(X数据)和价格(Y标签)的机器学习模型进行后续训练之后,将针对新的/不可见数据(X)预测将来的价格(Y)。
无监督学习:在无监督学习中,没有标签或目标属性。一个典型的例子是基于学习模式的数据聚类。对于房屋细节(面积,位置,价格,卧室数量,建成日期等)的数据集,算法需要查找是否有任何隐藏的模式。例如,一些房屋非常昂贵,而另外一些则是平常的价格。一些房子很大,而一些房子的大小一般。有了这些模式,记录/数据被聚集成一组,如豪宅,非豪宅,Bunglows,公寓等。
强化:在强化学习中,“代理”在“环境”中起作用,并收到正面或负面的反馈。正面的反馈告诉一个代理,它做得很好,代理进行类似的计划/行动。负面反馈告诉代理商,它做了一些错误的事情,应该改变它的行动方式。代理和环境是软件/编程实现。强化学习的核心是建立一个能够成功完成一个环境中的特定任务的代理。
常用算法:线性回归,Logistic回归,支持向量机,K-最近邻居,决策树,随机森林,梯度提升。
预处理:在现实世界的场景中,机器学习算法可以直接应用的状态下,数据很少干净整洁。预处理是一个清理数据的过程,供给机器学习算法。一些常见的预处理步骤是:
1.缺失值:当某些值丢失时,通常通过添加中值/平均值或删除相应的行,或使用前一行的值等来处理。有很多方法可以做到这一点。究竟需要做什么取决于数据的种类。
2.分类变量:离散有限的一组值,像“车型”,“部门”等,这些值被转换成数字或向量。转换为矢量被称为单热编码。在Python中有很多方法。一些机器学习算法/库本身通过内部编码来处理分类列。一种编码方式是在scikit-learn中使用 sklearn.preprocessing.OneHotEncoder。
3.比例缩放:按比例将列中的值缩减为常用比例,如0到1.在所有列中的值在一个共同的范围内可以在一定程度上提高准确性和训练速度。
4.异常值:异常值需要根据问题和商业案例逐个处理。
数据转换:当数据集中的列/属性没有固有的模式时,它会被转换成log(values),sqrt(values)等等。
特征工程:特征工程是从现有数据中获取隐藏洞察的过程。考虑一个房屋价格预测数据集,其中有“房屋宽度”,“房屋长度”,“卧室数量”和“价格”两列。在这里,我们看到房子的一个关键属性区域缺失,但可以根据“绘图宽度”和“绘图长度”进行计算。所以一个计算列,“面积”被添加到数据集。这被称为特征工程。
训练:这是机器学习算法对给定数据进行训练以找出应用于未知数据的一般化模式的主要步骤。
降维: Dimentionality减少的目的在于找到所有功能中最重要的功能,旨在减少维度的数据。您可以在这里找到更多关于降维的信息。
评估度量标准:评估度量标准是用于评估其正确性预测的度量标准。机器学习算法在训练时使用评估度量来评估,计算成本并优化成本凸函数。尽管每个算法都有一个默认评估指标,但建议根据业务案例/问题指定确切的评估指标。
参数调整:尽管当今最先进的算法大部分都具有合理的参数默认值,但通过调整参数来控制模型的准确性并改善总体预测,总是有帮助的。参数调整可以通过反复改变和评估准确性来反复试验。或者,可以提供一组参数值来尝试所有这些参数的不同排列,并找到最佳的参数组合。这可以在scikit-learn中使用称为超参数优化器的一些辅助函数完成。
过度拟合:过度拟合是机器学习模型几乎记忆所有训练数据并且几乎准确地预测已经在训练集中的数据的状态。这是一个模型未能概括和预测未被看见的数据的状态。可以使用正则化来处理过度拟合,如果配置不当,则调整超参数,从而阻止部分数据集使用正确的交叉验证(1)(2)策略。
欠拟合(差异):欠拟合是即使在预测训练集中的数据时,机器学习模型的预测也不会很好。这也被称为具有高方差的模型。欠拟合可以处理添加更多数据,添加/删除特征,尝试不同的机器学习算法等。
正则化:在模型试图进一步学习(减少错误,倾向于过度拟合)的某个时刻,正则化有助于对付过度拟合效应。正则化通常是在成本/误差计算过程中添加的参数。机器学习算法可能不是明确地提供正则化参数。在这种情况下,通常还有其他一些参数可以调整,以在必要的范围内引入正规化。
预测:为了用训练的机器学习模型进行预测,通过提供测试数据集作为参数来调用模型的预测方法。测试数据集应该按照训练数据集的方式进行预处理。换句话说,在用于训练的机器学习模型的相同格式的训练数据中。
其他术语:
模型堆叠:当单个学习算法不好时,多个机器学习算法被用来进行预测,并且预测以不同的方式组合在一起。最简单的是加权预测。有时,其他机器学习模型(元模型)被用在第一级模型的预测之上。这可能会达到任何复杂程度,并可能有不同的管道。
深度学习
有趣的是,今天解决的所有机器学习问题中的大部分(我猜测超过90%)都是使用随机森林,梯度增强决策树,SVM,KNN,线性回归,Logistic回归来解决的。
但是,有一些问题不能用上述技术来解决。类似图像分类,图像识别,自然语言处理,音频处理等问题,但可以使用称为深度学习的技术来解决。在开始深入学习之前,我相信首先要掌握所有上述概念。
良好的深度学习资源:
1.Fast.ai - Pranay Tiwari!
2.neuralnetworksanddeplearning.com - 一本在线书籍,强调理论和基础
3.Coursera的深度学习专长Andrew Ng
4.deeplearningbook.org - 一本在线书籍
如果你知道深度学习的概念,一些流行的深度学习库是:Keras,CNTK,Tensorflow,tflearn,pytorch,Theano。
实践:
练习是最重要的,没有提及练习机器学习,这个指南是不完整的。要进一步练习和掌握你的技能,下面是你可以做的事情:
从各种在线数据源获取数据集。一个这样流行的数据源是UCI机器学习库。
另外,您可以搜索“机器学习数据集”。
参加在线机器学习/数据科学比赛。一些流行的是- Kaggle,HackerEarth等等。如果你最终从非常困难的事情开始,试着坚持一下。如果还觉得困难,把它停在一边,找到其他的。没有必要失望。通常在线比赛的问题有一定的难度,可能并不适合初学者。写下来你所学到的东西!这将有助于巩固你对这个问题的理解和想法。PS:可以在云栖社区发表!
关注数据科学,关于Quora的机器学习主题,很多伟大的建议和问题/答案。
最后的想法:
如果您正在认真从事机器学习/数据科学领域,或者您正在考虑改变职业生涯,请考虑您的动机以及您为什么愿意这样做。
如果你确定,我有一个建议给你。永远不要放弃。这绝对是值得的,我可以说,从过去18个月以来,我走过了这条路......几乎每一天,每个周末和每个闲暇的时间(除了我旅行时,或者完全被我的日常工作所淹没)。掌握数据科学的道路并不容易。正如他们所说: “罗马不是一天建成的!”。你需要学习很多科目,兼顾不同的学习重点。即使学了很多东西,你仍然会发现以前从来没有想过或听说过的新东西。你不断发现的新概念/新技术可能会让你觉得你还是不了解很多东西,还有更多的理由要报道。这很常见。只要坚持下去。设定大目标,计划小任务,只关注手头的任务。
本文由阿里云云栖社区组织翻译。
文章原标题《getting-started-machine-learning-one-hour》,
作者:Abhijit Annaldas是一位软件工程师,也是一位贪婪的学习者,自学获得了机器学习方面的知识和专业知识。译者:虎说八道
人工智能赛博物理操作系统
AI-CPS OS
“人工智能赛博物理操作系统”(新一代技术+商业操作系统“AI-CPS OS”:云计算+大数据+物联网+区块链+人工智能)分支用来的今天,企业领导者必须了解如何将“技术”全面渗入整个公司、产品等“商业”场景中,利用AI-CPS OS形成数字化+智能化力量,实现行业的重新布局、企业的重新构建和自我的焕然新生。
AI-CPS OS的真正价值并不来自构成技术或功能,而是要以一种传递独特竞争优势的方式将自动化+信息化、智造+产品+服务和数据+分析一体化,这种整合方式能够释放新的业务和运营模式。如果不能实现跨功能的更大规模融合,没有颠覆现状的意愿,这些将不可能实现。
领导者无法依靠某种单一战略方法来应对多维度的数字化变革。面对新一代技术+商业操作系统AI-CPS OS颠覆性的数字化+智能化力量,领导者必须在行业、企业与个人这三个层面都保持领先地位:
重新行业布局:你的世界观要怎样改变才算足够?你必须对行业典范进行怎样的反思?
重新构建企业:你的企业需要做出什么样的变化?你准备如何重新定义你的公司?
重新打造自己:你需要成为怎样的人?要重塑自己并在数字化+智能化时代保有领先地位,你必须如何去做?
AI-CPS OS是数字化智能化创新平台,设计思路是将大数据、物联网、区块链和人工智能等无缝整合在云端,可以帮助企业将创新成果融入自身业务体系,实现各个前沿技术在云端的优势协同。AI-CPS OS形成的数字化+智能化力量与行业、企业及个人三个层面的交叉,形成了领导力模式,使数字化融入到领导者所在企业与领导方式的核心位置:
精细:这种力量能够使人在更加真实、细致的层面观察与感知现实世界和数字化世界正在发生的一切,进而理解和更加精细地进行产品个性化控制、微观业务场景事件和结果控制。
智能:模型随着时间(数据)的变化而变化,整个系统就具备了智能(自学习)的能力。
高效:企业需要建立实时或者准实时的数据采集传输、模型预测和响应决策能力,这样智能就从批量性、阶段性的行为变成一个可以实时触达的行为。
不确定性:数字化变更颠覆和改变了领导者曾经仰仗的思维方式、结构和实践经验,其结果就是形成了复合不确定性这种颠覆性力量。主要的不确定性蕴含于三个领域:技术、文化、制度。
边界模糊:数字世界与现实世界的不断融合成CPS不仅让人们所知行业的核心产品、经济学定理和可能性都产生了变化,还模糊了不同行业间的界限。这种效应正在向生态系统、企业、客户、产品快速蔓延。
AI-CPS OS形成的数字化+智能化力量通过三个方式激发经济增长:
创造虚拟劳动力,承担需要适应性和敏捷性的复杂任务,即“智能自动化”,以区别于传统的自动化解决方案;
对现有劳动力和实物资产进行有利的补充和提升,提高资本效率;
人工智能的普及,将推动多行业的相关创新,开辟崭新的经济增长空间。
给决策制定者和商业领袖的建议:
超越自动化,开启新创新模式:利用具有自主学习和自我控制能力的动态机器智能,为企业创造新商机;
迎接新一代信息技术,迎接人工智能:无缝整合人类智慧与机器智能,重新
评估未来的知识和技能类型;
制定道德规范:切实为人工智能生态系统制定道德准则,并在智能机器的开
发过程中确定更加明晰的标准和最佳实践;
重视再分配效应:对人工智能可能带来的冲击做好准备,制定战略帮助面临
较高失业风险的人群;
开发数字化+智能化企业所需新能力:员工团队需要积极掌握判断、沟通及想象力和创造力等人类所特有的重要能力。对于中国企业来说,创造兼具包容性和多样性的文化也非常重要。
子曰:“君子和而不同,小人同而不和。” 《论语·子路》云计算、大数据、物联网、区块链和 人工智能,像君子一般融合,一起体现科技就是生产力。
如果说上一次哥伦布地理大发现,拓展的是人类的物理空间。那么这一次地理大发现,拓展的就是人们的数字空间。在数学空间,建立新的商业文明,从而发现新的创富模式,为人类社会带来新的财富空间。云计算,大数据、物联网和区块链,是进入这个数字空间的船,而人工智能就是那船上的帆,哥伦布之帆!
新一代技术+商业的人工智能赛博物理操作系统AI-CPS OS作为新一轮产业变革的核心驱动力,将进一步释放历次科技革命和产业变革积蓄的巨大能量,并创造新的强大引擎。重构生产、分配、交换、消费等经济活动各环节,形成从宏观到微观各领域的智能化新需求,催生新技术、新产品、新产业、新业态、新模式。引发经济结构重大变革,深刻改变人类生产生活方式和思维模式,实现社会生产力的整体跃升。
产业智能官 AI-CPS
用“人工智能赛博物理操作系统”(新一代技术+商业操作系统“AI-CPS OS”:云计算+大数据+物联网+区块链+人工智能),在场景中构建状态感知-实时分析-自主决策-精准执行-学习提升的认知计算和机器智能;实现产业转型升级、DT驱动业务、价值创新创造的产业互联生态链。
长按上方二维码关注微信公众号: AI-CPS,更多信息回复:
新技术:“云计算”、“大数据”、“物联网”、“区块链”、“人工智能”;新产业:“智能制造”、“智能农业”、“智能金融”、“智能零售”、“智能城市”、“智能驾驶”;新模式:“财富空间”、“数据科学家”、“赛博物理”、“供应链金融”。
官方网站:AI-CPS.NET
本文系“产业智能官”(公众号ID:AI-CPS)收集整理,转载请注明出处!
版权声明:由产业智能官(公众号ID:AI-CPS)推荐的文章,除非确实无法确认,我们都会注明作者和来源。部分文章推送时未能与原作者取得联系。若涉及版权问题,烦请原作者联系我们,与您共同协商解决。联系、投稿邮箱:erp_vip@hotmail.com