253页PPT!《因果性Causality》教程,哥本哈根大学Jonas Peters讲授

2022 年 7 月 7 日 专知


最近大多数机器学习都专注于纯预测性能,这是其实际成功背后的驱动力。因果关系的问题(理解预测为什么有效)在某种程度上被抛在了后面。这种模式非常重要,因为它可以帮助理解哪些基因导致了哪些疾病,哪些政策影响了哪些经济指标。


在因果关系领域,我们希望了解系统在干预(如基因敲除实验)下的反应。这些问题超出了统计上的依赖,因此不能用标准的回归或分类技术来回答。在本教程中,你将学习因果推理的有趣问题和该领域的最新发展。不需要事先了解因果关系。


第一部分: 我们介绍了结构性因果模型和正式的介入性分布。我们定义因果效应,并展示如何计算它们,如果因果结构是已知的。


第二部分: 我们提出了三种可以用来从数据中推断因果结构的想法:(1)发现数据中的(条件)独立性,(2)限制结构方程模型,(3)利用因果模型在不同环境中保持不变的事实。


第三部分:我们展示了因果概念如何在更经典的机器学习问题中使用。


第四部分: 机器学习的应用



专知便捷查看

便捷下载,请关注专知公众号(点击上方蓝色专知关注)

  • 后台回复“C251” 就可以获取253页PPT!《因果性Causality》教程,哥本哈根大学Jonas Peters讲授》专知下载链接

                       
专知,专业可信的人工智能知识分发 ,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取100000+AI(AI与军事、医药、公安等)主题干货知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程资料和与专家交流咨询
点击“ 阅读原文 ”,了解使用 专知 ,查看获取100000+AI主题知识资料
登录查看更多
3

相关内容

【NeurIPS2020】因果推断学习教程,70页ppt
专知会员服务
190+阅读 · 2020年12月12日
最新《因果推断导论: 从机器学习视角》新书稿,132页pdf
专知会员服务
274+阅读 · 2020年8月25日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【NUS-Xavier教授】注意力神经网络,79页ppt
专知
3+阅读 · 2021年11月25日
国家自然科学基金
2+阅读 · 2015年4月30日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
8+阅读 · 2012年12月31日
国家自然科学基金
7+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年9月12日
Arxiv
23+阅读 · 2022年2月4日
Arxiv
22+阅读 · 2019年11月24日
VIP会员
相关VIP内容
相关基金
国家自然科学基金
2+阅读 · 2015年4月30日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
8+阅读 · 2012年12月31日
国家自然科学基金
7+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员