最新《因果推断导论: 从机器学习视角》新书稿,92页pdf

2020 年 9 月 29 日 专知
最新《因果推断导论: 从机器学习视角》新书稿,92页pdf

有几个主要的主题贯穿全书。这些主题主要是对两个不同类别的比较。当你阅读的时候,很重要的一点是你要明白书的不同部分适合什么类别,不适合什么类别。


统计与因果。即使有无限多的数据,我们有时也无法计算一些因果量。相比之下,很多统计是关于在有限样本中解决不确定性的。当给定无限数据时,没有不确定性。然而,关联,一个统计概念,不是因果关系。在因果推理方面还有更多的工作要做,即使在开始使用无限数据之后也是如此。这是激发因果推理的主要区别。我们在这一章已经做了这样的区分,并将在整本书中继续做这样的区分。


识别与评估。因果效应的识别是因果推论所独有的。这是一个有待解决的问题,即使我们有无限的数据。然而,因果推理也与传统统计和机器学习共享估计。我们将主要从识别因果效应(在第2章中,4和6)之前估计因果效应(第7章)。例外是2.5节和节4.6.2,我们进行完整的例子估计给你的整个过程是什么样子。


介入与观察。如果我们能进行干预/实验,因果效应的识别就相对容易了。这很简单,因为我们可以采取我们想要衡量因果效应的行动,并简单地衡量我们采取行动后的效果。观测数据变得更加复杂,因为数据中几乎总是引入混杂。


假设。将会有一个很大的焦点是我们用什么假设来得到我们得到的结果。每个假设都有自己的框来帮助人们注意到它。清晰的假设应该使我们很容易看到对给定的因果分析或因果模型的批评。他们希望,清晰地提出假设将导致对因果关系的更清晰的讨论



https://www.bradyneal.com/causal-inference-course



专知便捷查看

便捷下载,请关注专知公众号(点击上方蓝色专知关注)

  • 后台回复“CI61” 就可以获取最新《因果推断导论: 从机器学习视角》新书稿,61页pdf》专知下载链接

专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取5000+AI主题干货知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程资料和与专家交流咨询
点击“ 阅读原文 ”,了解使用 专知 ,查看获取5000+AI主题知识资料
登录查看更多
15

相关内容

概率论起源于17世纪的法国,当时两位伟大的法国数学家,布莱斯·帕斯卡和皮埃尔·德·费马,对两个来自机会博弈的问题进行了通信。帕斯卡和费马解决的问题继续影响着惠更斯、伯努利和DeMoivre等早期研究者建立数学概率论。今天,概率论是一个建立良好的数学分支,应用于从音乐到物理的学术活动的每一个领域,也应用于日常经验,从天气预报到预测新的医疗方法的风险。

本文是为数学、物理和社会科学、工程和计算机科学的二、三、四年级学生开设的概率论入门课程而设计的。它提出了一个彻底的处理概率的想法和技术为一个牢固的理解的主题必要。文本可以用于各种课程长度、水平和重点领域。

在标准的一学期课程中,离散概率和连续概率都包括在内,学生必须先修两个学期的微积分,包括多重积分的介绍。第11章包含了关于马尔可夫链的材料,为了涵盖这一章,一些矩阵理论的知识是必要的。

文本也可以用于离散概率课程。材料被组织在这样一种方式,离散和连续的概率讨论是在一个独立的,但平行的方式,呈现。这种组织驱散了对概率过于严格或正式的观点,并提供了一些强大的教学价值,因为离散的讨论有时可以激发更抽象的连续的概率讨论。在离散概率课程中,学生应该先修一学期的微积分。

为了充分利用文中的计算材料和例子,假设或必要的计算背景很少。所有在文本中使用的程序都是用TrueBASIC、Maple和Mathematica语言编写的。

成为VIP会员查看完整内容
0
46

本课程的教材是从机器学习的角度写的,是为那些有必要先决条件并对学习因果关系基础感兴趣的人而开设的。我尽我最大的努力整合来自许多不同领域的见解,利用因果推理,如流行病学、经济学、政治学、机器学习等。

有几个主要的主题贯穿全课程。这些主题主要是对两个不同类别的比较。当你阅读的时候,很重要的一点是你要明白书的不同部分适合什么类别,不适合什么类别。

统计与因果。即使有无限多的数据,我们有时也无法计算一些因果量。相比之下,很多统计是关于在有限样本中解决不确定性的。当给定无限数据时,没有不确定性。然而,关联,一个统计概念,不是因果关系。在因果推理方面还有更多的工作要做,即使在开始使用无限数据之后也是如此。这是激发因果推理的主要区别。我们在这一章已经做了这样的区分,并将在整本书中继续做这样的区分。

识别与评估。因果效应的识别是因果推论所独有的。这是一个有待解决的问题,即使我们有无限的数据。然而,因果推理也与传统统计和机器学习共享估计。我们将主要从识别因果效应(在第2章中,4和6)之前估计因果效应(第7章)。例外是2.5节和节4.6.2,我们进行完整的例子估计给你的整个过程是什么样子。

介入与观察。如果我们能进行干预/实验,因果效应的识别就相对容易了。这很简单,因为我们可以采取我们想要衡量因果效应的行动,并简单地衡量我们采取行动后的效果。观测数据变得更加复杂,因为数据中几乎总是引入混杂。

假设。将会有一个很大的焦点是我们用什么假设来得到我们得到的结果。每个假设都有自己的框来帮助人们注意到它。清晰的假设应该使我们很容易看到对给定的因果分析或因果模型的批评。他们希望,清晰地提出假设将导致对因果关系的更清晰的讨论。

成为VIP会员查看完整内容
0
79

有几个主要的主题贯穿全书。这些主题主要是对两个不同类别的比较。当你阅读的时候,很重要的一点是你要明白书的不同部分适合什么类别,不适合什么类别。

统计与因果。即使有无限多的数据,我们有时也无法计算一些因果量。相比之下,很多统计是关于在有限样本中解决不确定性的。当给定无限数据时,没有不确定性。然而,关联,一个统计概念,不是因果关系。在因果推理方面还有更多的工作要做,即使在开始使用无限数据之后也是如此。这是激发因果推理的主要区别。我们在这一章已经做了这样的区分,并将在整本书中继续做这样的区分。

识别与评估。因果效应的识别是因果推论所独有的。这是一个有待解决的问题,即使我们有无限的数据。然而,因果推理也与传统统计和机器学习共享估计。我们将主要从识别因果效应(在第2章中,4和6)之前估计因果效应(第7章)。例外是2.5节和节4.6.2,我们进行完整的例子估计给你的整个过程是什么样子。

介入与观察。如果我们能进行干预/实验,因果效应的识别就相对容易了。这很简单,因为我们可以采取我们想要衡量因果效应的行动,并简单地衡量我们采取行动后的效果。观测数据变得更加复杂,因为数据中几乎总是引入混杂。

假设。将会有一个很大的焦点是我们用什么假设来得到我们得到的结果。每个假设都有自己的框来帮助人们注意到它。清晰的假设应该使我们很容易看到对给定的因果分析或因果模型的批评。他们希望,清晰地提出假设将导致对因果关系的更清晰的讨论。

https://www.bradyneal.com/causal-inference-course

成为VIP会员查看完整内容
0
117

这本书的第五版继续讲述如何运用概率论来深入了解真实日常的统计问题。这本书是为工程、计算机科学、数学、统计和自然科学的学生编写的统计学、概率论和统计的入门课程。因此,它假定有基本的微积分知识。

第一章介绍了统计学的简要介绍,介绍了它的两个分支:描述统计学和推理统计学,以及这门学科的简短历史和一些人,他们的早期工作为今天的工作提供了基础。

第二章将讨论描述性统计的主题。本章展示了描述数据集的图表和表格,以及用于总结数据集某些关键属性的数量。

为了能够从数据中得出结论,有必要了解数据的来源。例如,人们常常假定这些数据是来自某个总体的“随机样本”。为了确切地理解这意味着什么,以及它的结果对于将样本数据的性质与整个总体的性质联系起来有什么意义,有必要对概率有一些了解,这就是第三章的主题。本章介绍了概率实验的思想,解释了事件概率的概念,并给出了概率的公理。

我们在第四章继续研究概率,它处理随机变量和期望的重要概念,在第五章,考虑一些在应用中经常发生的特殊类型的随机变量。给出了二项式、泊松、超几何、正规、均匀、伽玛、卡方、t和F等随机变量。

成为VIP会员查看完整内容
2
109

对因果推理的简明和自成体系的介绍,在数据科学和机器学习中越来越重要。

因果关系的数学化是一个相对较新的发展,在数据科学和机器学习中变得越来越重要。这本书提供了一个独立的和简明的介绍因果模型和如何学习他们的数据。在解释因果模型的必要性,讨论潜在的因果推论的一些原则,这本书教读者如何使用因果模型:如何计算干预分布,如何从观测推断因果模型和介入的数据,和如何利用因果思想经典的机器学习问题。所有这些主题都将首先以两个变量的形式进行讨论,然后在更一般的多元情况下进行讨论。对于因果学习来说,二元情况是一个特别困难的问题,因为经典方法中用于解决多元情况的条件独立不存在。作者认为分析因果之间的统计不对称是非常有意义的,他们报告了他们对这个问题十年来的深入研究。

本书对具有机器学习或统计学背景的读者开放,可用于研究生课程或作为研究人员的参考。文本包括可以复制和粘贴的代码片段、练习和附录,其中包括最重要的技术概念摘要。

首先,本书主要研究因果关系推理子问题,这可能被认为是最基本和最不现实的。这是一个因果问题,需要分析的系统只包含两个可观测值。在过去十年中,作者对这个问题进行了较为详细的研究。本书整理这方面的大部分工作,并试图将其嵌入到作者认为对研究因果关系推理问题的选择性至关重要的更大背景中。尽管先研究二元(bivariate)案例可能有指导意义,但按照章节顺序,也可以直接开始阅读多元(multivariate)章节;见图一。

第二,本书提出的解决方法来源于机器学习和计算统计领域的技术。作者对其中的方法如何有助于因果结构的推断更感兴趣,以及因果推理是否能告诉我们应该如何进行机器学习。事实上,如果我们不把概率分布描述的随机实验作为出发点,而是考虑分布背后的因果结构,机器学习的一些最深刻的开放性问题就能得到最好的理解。
成为VIP会员查看完整内容
0
268
小贴士
相关VIP内容
专知会员服务
46+阅读 · 2020年11月25日
专知会员服务
43+阅读 · 2020年11月24日
专知会员服务
57+阅读 · 2020年11月6日
专知会员服务
60+阅读 · 2020年9月17日
专知会员服务
79+阅读 · 2020年9月1日
专知会员服务
117+阅读 · 2020年8月25日
专知会员服务
109+阅读 · 2020年7月28日
专知会员服务
99+阅读 · 2020年7月27日
专知会员服务
91+阅读 · 2020年5月2日
相关论文
Martin Bullinger,Warut Suksompong,Alexandros A. Voudouris
0+阅读 · 2020年12月3日
Junhyunng Park,Krikamol Muandet
0+阅读 · 2020年12月3日
J. Emmanuel Johnson,Valero Laparra,Gustau Camps-Valls,Raul Santos-Rodríguez,Jesús Malo
0+阅读 · 2020年12月2日
Hao Wang,Carlos Igncio Hernández Castellanos,Tome Eftimov
0+阅读 · 2020年12月1日
Fantine Huot,R. Lily Hu,Matthias Ihme,Qing Wang,John Burge,Tianjian Lu,Jason Hickey,Yi-Fan Chen,John Anderson
0+阅读 · 2020年12月1日
Farhad Moghimifar,Gholamreza Haffari,Mahsa Baktashmotlagh
0+阅读 · 2020年11月27日
Jianzhu Guo,Xiangyu Zhu,Chenxu Zhao,Dong Cao,Zhen Lei,Stan Z. Li
4+阅读 · 2020年3月17日
Kai-Lang Yao,Wu-Jun Li
3+阅读 · 2020年2月12日
A Multi-Objective Deep Reinforcement Learning Framework
Thanh Thi Nguyen
9+阅读 · 2018年6月27日
Bryan Perozzi,Rami Al-Rfou,Steven Skiena
7+阅读 · 2014年6月27日
Top