124页《流行学习数学基础》,哈佛数学系本科论文

2020 年 12 月 23 日 专知

转载机器之心

编辑:魔王
近日,哈佛大学数学系毕业生、现牛津大学博士 Luke Melas-Kyriazi 发布其本科毕业论文,结合统计学习、谱图理论和微分几何三个数学领域介绍流形学习。

流形学习(manifold learning)是机器学习、模式识别中的一种方法,在维数约简方面具有广泛的应用。它的主要思想是将高维的数据映射到低维,使该低维的数据能够反映原高维数据的某些本质结构特征。流形学习的前提是有一种假设,即某些高维数据,实际是一种低维的流形结构嵌入在高维空间中。流形学习的目的是将其映射回低维空间中,揭示其本质。流形学习可以作为一种数据降维的方式。此外,流形能够刻画数据的本质,主要代表方法有等距映射、局部线性嵌入等。

自 2000 年在著名的科学杂志《Science》首次提出以来,流形学习成为机器学习领域中的一个热点。近日,一篇来自哈佛大学数学系的本科毕业论文引起了大家关注。它结合三个看似不太相关的数学领域来介绍流形学习的数学基础,这三个领域分别是: 统计学习、谱图理论和微分几何


论文链接:https://arxiv.org/pdf/2011.01307.pdf

什么是流形学习?

要想从数据中学习,我们首先要假设数据具备某种内在结构。在一些机器学习方法中,该假设是隐式的。而流形学习领域中该假设是显式的,它假设观察到的数据是嵌入在高维空间中的低维流形。直观来看,这一假设(又叫流形假设)认为数据的形态是相对简单的。

以自然图像的空间为例。图像是以像素形式存储的,因此图像空间在像素空间 R^H×W×3 内。但是,我们希望自然图像空间的维度比像素空间低一些,像素空间某种程度上几乎被看起来像「噪声」的图像塞满了。此外,我们可以看到自然图像空间是非线性的,因为两个自然图像的(像素级)平均并非自然图像。流形假设认为,自然图像空间具备低维流形嵌入在高维像素空间中的微分几何结构。

应当强调的是,流形学习不是监督学习、无监督学习那样的学习类型,这些学习类型指的是学习任务(是否具备标注数据),而流形学习指的是一组基于流形假设的方法。流形学习方法多在半监督和无监督学习设置下使用,不过也可以用在监督学习环境中。

论文内容概览

该论文结合三个数学领域来介绍流形学习:统计学习、谱图理论和微分几何,并在最后一章中介绍了 流形正则化 的思想。流形正则化可以学习与数据流形相关的函数,而不是数据所在的外围空间。

要想了解流形学习和流形正则化,我们首先需要了解 核学习 (kernel learning),以及流形与图之间的关系。

论文第二、三章重点介绍核学习。第二章介绍了监督和半监督学习的基础知识,第三章介绍再生核希尔伯特空间中的监督核学习理论,该理论为大量正则化技术奠定了严谨的数学基础。

第四章通过 拉普拉斯算子 来探索流形与图之间的关系。乍一看,流形与图似乎区别很大,但拉普拉斯算子揭示了二者之间的对应性。

第五章介绍了流形正则化。该研究发现,使用基于数据所生成图的拉普拉斯算子,可以很容易地将流形正则化添加至多种学习算法。本章证明了这一图方法的理论有效性:在无限数据情况下,数据图的拉普拉斯算子能够收敛至数据流形的拉普拉斯算子。

论文目录如下:


作者简介


这篇论文的作者 Luke Melas-Kyriazi 今年五月毕业于哈佛大学数学系,现在牛津大学读博。他对机器学习和计算机视觉感兴趣,目前的研究重点是半监督和多模态学习。

个人主页:https://lukemelas.github.io/
GitHub 主页:https://github.com/lukemelas

专知便捷查看

便捷下载,请关注专知公众号(点击上方蓝色专知关注)

  • 后台回复“ML124” 可以获取《124页哈佛数学系本科论文,带你了解流形学习的数学基础》专知下载链接索引

专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取5000+AI主题干货知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程资料和与专家交流咨询
点击“ 阅读原文 ”,了解使用 专知 ,查看获取5000+AI主题知识资源
登录查看更多
1

相关内容

流形学习,全称流形学习方法(Manifold Learning),自2000年在著名的科学杂志《Science》被首次提出以来,已成为信息科学领域的研究热点。在理论和应用上,流形学习方法都具有重要的研究意义。假设数据是均匀采样于一个高维欧氏空间中的低维流形,流形学习就是从高维采样数据中恢复低维流形结构,即找到高维空间中的低维流形,并求出相应的嵌入映射,以实现维数约简或者数据可视化。它是从观测到的现象中去寻找事物的本质,找到产生数据的内在规律。
124页哈佛数学系本科论文,带你了解流形学习的数学基础
专知会员服务
44+阅读 · 2020年12月23日
【牛津大学博士论文】解释深度神经网络,134页pdf
专知会员服务
215+阅读 · 2020年10月8日
还在修改博士论文?这份《博士论文写作技巧》为你指南
【ICML2020-哈佛】深度语言表示中可分流形
专知会员服务
12+阅读 · 2020年6月2日
【纽约大学】最新《离散数学》笔记,451页pdf
专知会员服务
128+阅读 · 2020年5月26日
干货书《数据科学数学系基础》2020最新版,266页pdf
专知会员服务
318+阅读 · 2020年3月23日
人工智能入门书单(附PDF链接)
AI前线
22+阅读 · 2018年8月2日
【论文笔记】ICLR 2018 Wasserstein自编码器
专知
28+阅读 · 2018年6月29日
【干货】​深度学习中的线性代数
专知
21+阅读 · 2018年3月30日
数学不好能搞人工智能吗?
算法与数学之美
3+阅读 · 2017年11月27日
大学数学不好,或许是数学教材的锅?
算法与数学之美
15+阅读 · 2017年8月1日
【基础数学】- 01
遇见数学
19+阅读 · 2017年7月25日
Sparse Sequence-to-Sequence Models
Arxiv
5+阅读 · 2019年5月14日
Deformable ConvNets v2: More Deformable, Better Results
Arxiv
5+阅读 · 2018年5月31日
Arxiv
3+阅读 · 2018年2月22日
Arxiv
22+阅读 · 2018年2月14日
Arxiv
4+阅读 · 2017年7月25日
VIP会员
相关VIP内容
相关资讯
人工智能入门书单(附PDF链接)
AI前线
22+阅读 · 2018年8月2日
【论文笔记】ICLR 2018 Wasserstein自编码器
专知
28+阅读 · 2018年6月29日
【干货】​深度学习中的线性代数
专知
21+阅读 · 2018年3月30日
数学不好能搞人工智能吗?
算法与数学之美
3+阅读 · 2017年11月27日
大学数学不好,或许是数学教材的锅?
算法与数学之美
15+阅读 · 2017年8月1日
【基础数学】- 01
遇见数学
19+阅读 · 2017年7月25日
相关论文
Sparse Sequence-to-Sequence Models
Arxiv
5+阅读 · 2019年5月14日
Deformable ConvNets v2: More Deformable, Better Results
Arxiv
5+阅读 · 2018年5月31日
Arxiv
3+阅读 · 2018年2月22日
Arxiv
22+阅读 · 2018年2月14日
Arxiv
4+阅读 · 2017年7月25日
Top
微信扫码咨询专知VIP会员