最近,图注意力网络一作 Petar Veličković 在母校剑桥大学做了一场讲座,介绍图神经网络的理论基础。
图神经网络(GNN)是机器学习中最热门的研究方向之一,在提出后的十几年里被不断扩展,先后发展出了图卷积网络、 图注意力网络、图自编码器、图生成网络和图时空网络等多个子领域。
最近,图注意力网络的第一作者 Petar Veličković 回到母校剑桥大学计算机实验室做了一场主题为《图神经网络理论基础》的讲座。在演讲中,Petar 尝试从基本原理推导 GNN,介绍其在多个学科中的应用,并解释 GNN 如何在多个研究路线中并行出现。
讲座幻灯片地址:https://petar-v.com/talks/GNN-Wednesday.pdf
Petar 表示,这个演讲「浓缩」了他 4 年 GNN 研究的精华,「这些年我用多种方式讲授 GNN,现在我终于找到了最『自然』的讲解方式。」他表示,这个 70 分钟的讲座既可以帮助初学者,也可以为 GNN 实践者提供新的角度。
Petar Veličković:我找到了最「自然」的 GNN 讲解方式
Petar 首先介绍了现实世界中的图、图神经网络的实际应用,以及 GNN 的相关库和数据集等。
Petar 表示,该讲座的内容基于其关于几何深度学习的研究、麦吉尔大学助理教授 William Hamilton 的著作《图表示学习》,以及 Yoshua Bengio、Marco Gori、Jürgen Schmidhuber 等多位研究者的工作。
Petar 首先从基本原理定义 GNN,然后介绍了对 GNN 处理图数据有用的特性,并列举了一些示例。
Petar 介绍了 GNN 的发展过程与研究蓝图,及其在多个研究领域中的并行出现。例如,自然语言处理与 GNN。
Petar Veličković现为 DeepMind 高级研究科学家。他于 2019 年从剑桥大学获得计算机科学博士学位,导师为 Pietro Liò。他的研究方向包括:设计在复杂结构数据上运行的神经网络架构(如图网络),及其在算法推理和计算生物学方面的应用。
Petar Veličković是图注意力网络的一作,他和 Guillem Cucurull、Yoshua Bengio 等人一起完成了图注意力网络的开山之作——《Graph Attention Networks》,这篇论文被 ICLR 2018 接收,目前被引量超过 3000。
除了图注意力网络,他还是《Deep Graph Infomax》的一作。在这篇论文中,他和 William Fedus、Yoshua Bengio 等人提出了以无监督方式学习图结构数据中节点表示的通用方法,该论文被 ICLR 2019 接收。
去年,机器之心曾报道过他的博士论文,Petar 用 147 页篇幅详述了「结构在神经网络中的复兴」,涵盖他之前的研究工作和其他关于 GNN 的内容。而今天介绍的这个讲座更是融合了他「近 4 年 GNN 研究的精华」,对图神经网络领域感兴趣的读者可以一看。
个人主页地址:https://petar-v.com/
建新·见智 —— 2021亚马逊云科技 AI 在线大会
4月22日 14:00 - 18:00
大会包括主题演讲和六大分会场。内容涵盖亚马逊机器学习实践揭秘、人工智能赋能企业数字化转型、大规模机器学习实现之道、AI 服务助力互联网快速创新、开源开放与前沿趋势、合作共赢的智能生态等诸多话题。
亚马逊云科技技术专家以及各个行业合作伙伴将现身说法,讲解 AI/ML 在实现组织高效运行过程中的巨大作用。每个热爱技术创新的 AI/ML 的爱好者及实践者都不容错过。
识别二维码或点击阅读原文,免费报名看直播。
© THE END
转载请联系本公众号获得授权
投稿或寻求报道:content@jiqizhixin.com