@ARTICLE{9705128, author={Liu, Yu and Hong, Xiaopeng and Tao, Xiaoyu and Dong, Songlin and Shi, Jingang and Gong, Yihong}, journal={IEEE Transactions on Neural Networks and Learning Systems}, title={Model Behavior Preserving for Class-Incremental Learning}, year={2022}, volume={}, number={}, pages={1-12}, doi={10.1109/TNNLS.2022.3144183}}
Plain text:
Y. Liu, X. Hong, X. Tao, S. Dong, J. Shi and Y. Gong, "Model Behavior Preserving for Class-Incremental Learning," in IEEE Transactions on Neural Networks and Learning Systems, doi: 10.1109/TNNLS.2022.3144183.
参考文献
[1] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, “ICaRL: Incremental classifier and representation learning,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 2001–2010.
[2] S. Hou, X. Pan, C. C. Loy, Z. Wang, and D. Lin, “Learning a unified classifier incrementally via rebalancing,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 831–839.
[3] X. Tao, X. Chang, X. Hong, X. Wei, and Y. Gong, “Topology-preserving class-incremental learning,” in Proc. Eur. Conf. Comput. Vis. Cham, Switzerland: Springer, 2020, pp. 254–270.
[4] R. Kumar and S. Vassilvitskii, “Generalized distances between rankings,”in Proc. 19th Int. Conf. World Wide Web (WWW), 2010, pp. 571–580.