【CVPR2020-哈工大-京东】自监督结构建模的目标识别,Self-supervised Structure Modeling

2020 年 4 月 1 日 专知

大多数的对象识别方法主要侧重于学习有判别性的视觉模式,而忽略了整体的物体结构。尽管很重要,但结构建模通常需要大量的手工注释,因此是劳动密集型的。在这篇论文中,我们提出通过将自我监督纳入传统的框架中来“观察对象”(明确而内在地对对象结构建模)。我们证明了在不增加额外注释和推理速度的情况下,识别主干可以被显著增强,从而实现更健壮的表示学习。具体来说,我们首先提出了一个对象范围学习模块,用于根据同一类别中实例间共享的视觉模式对对象进行本地化。然后,我们设计了一个空间上下文学习模块,通过预测范围内的相对位置,对对象的内部结构进行建模。这两个模块可以很容易地插入到任何骨干网络训练和分离的推理时间。大量的实验表明,我们的内视对象方法(LIO)在许多基准上获得了巨大的性能提升,包括通用对象识别(ImageNet)和细粒度对象识别任务(CUB、Cars、Aircraft)。我们还表明,这种学习范式可以高度泛化到其他任务,如对象检测和分割(MS COCO)。

https://www.zhuanzhi.ai/paper/62b5393c56299c2aa68e3eae8a080a11



专知便捷查看

便捷下载,请关注专知公众号(点击上方蓝色专知关注)

  • 后台回复“SSM” 就可以获取【CVPR2020-哈工大-京东】自监督结构建模的目标识别,Self-supervised Structure Modeling》专知下载链接

专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取5000+AI主题干货知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程资料和与专家交流咨询
点击“ 阅读原文 ”,了解使用 专知 ,查看获取5000+AI主题知识资源
登录查看更多
2

相关内容

目标识别是指一个特殊目标(或一种类型的目标)从其它目标(或其它类型的目标)中被区分出来的过程。它既包括两个非常相似目标的识别,也包括一种类型的目标同其他类型目标的识别。
【CVPR2020-旷视】DPGN:分布传播图网络的小样本学习
专知会员服务
26+阅读 · 2020年4月1日
【论文】结构GANs,Structured GANs,
专知会员服务
14+阅读 · 2020年1月16日
ICCV 2019 | 精确的端到端的弱监督目标检测网络
AI科技评论
11+阅读 · 2019年12月9日
【CVPR2019教程】视频理解中的图表示学习
专知
43+阅读 · 2019年6月20日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Arxiv
7+阅读 · 2018年5月23日
Arxiv
13+阅读 · 2017年12月5日
VIP会员
相关VIP内容
【CVPR2020-旷视】DPGN:分布传播图网络的小样本学习
专知会员服务
26+阅读 · 2020年4月1日
【论文】结构GANs,Structured GANs,
专知会员服务
14+阅读 · 2020年1月16日
Top
微信扫码咨询专知VIP会员