有哪些深度学习效果不如传统方法的经典案例?

2022 年 5 月 4 日 极市平台
↑ 点击 蓝字  关注极市平台

作者丨桔了个仔、莫笑傅立叶、LinT
来源丨知乎问答
编辑丨极市平台

极市导读

 

深度学习作为目前最前沿的科技领域之一,一般都引导着科技进步,但是是否存在一些深度学习的效果反而不如传统方法的案例呢?本文汇总了一些该问题下的优质回答,回答均来自知乎。 >>加入极市CV技术交流群,走在计算机视觉的最前沿

问题链接: https://www.zhihu.com/question/451498156


# 回答一

作者:桔了个仔

来源链接:https://www.zhihu.com/question/451498156/answer/1802577845

对于解释性有要求的领域,基本深度学习是没法和传统方法比的。我这几年都在做风控/反洗钱的产品,但监管要求我们的决策要可解释性,而我们曾经尝试深度学习,解释性很难搞,而且,效果也不咋地。对于风控场景,数据清洗是非常重要的事,否则只会是garbage in garge out。
在写上面内容时,我想起前两年看的一篇文章:《你不需要ML/AI,你需要SQL》
https://news.ycombinator.com/item?id=17433752
作者是尼日利亚的软件工程师Celestine Omin,在尼日利亚最大的电商网站之一Konga工作。我们都知道,对老用户精准营销和个性化推荐,都是AI最为常用的领域之一。当别人在用深度学习搞推荐时,他的方法显得异常简单。他只是跑了一遍数据库,筛选出所有3个月没有登录过的用户,给他们推优惠券。还跑了一遍用户购物车的商品清单,根据这些热门商品,决定推荐什么相关联的商品。
结果,他这种简单的而基于SQL的个性化推荐,大多数营销邮件的打开率在7-10%之间,做得好时打开率接近25-30%,是行业平均打开率的三倍。
当然,这个例子并不是告诉大家,推荐算法没用,大家都应该用SQL,而是说,深度学习应用时,需要考虑成本,应用场景等制约因素。我在之前的回答里 (算法工程师的落地能力具体指的是什么?) ,说到过算法落地时需要考虑实际制约因素。
https://news.ycombinator.com/item?id=17433752
而尼日利亚的电商环境,依然出于非常落后的状态,物流也跟不上。即使使用深度学习方法,提升了效果,实际对公司整体利润并不会有太大影响。
所以,算法落地时必须「因地制宜」否则,又会出现「电风扇吹香皂盒」的情况。
某大企业引进了一条香皂包装生产线,结果发现这条生产线有个缺陷:常常会有盒子里没装入香皂。总不能把空盒子卖给顾客啊,他们只得请了一个学自动化的博士后设计一个方案来分拣空的香皂盒。
博士后拉起了一个十几人的科研攻关小组,综合采用了机械、微电子、自动化、X射线探测等技术,花了90万,成功解决了问题。每当生产线上有空香皂盒通过,两旁的探测器会检测到,并且驱动一只机械手把空皂盒推走。
中国南方有个乡镇企业也买了同样的生产线,老板发现这个问题后大为发火,找了个小工来说“你他妈给老子把这个搞定,不然你给老子爬走。”小工很快想出了办法他花了190块钱在生产线旁边放了一台大功率电风扇猛吹,于是空皂盒都被吹走了。
(虽然只是个段子)
深度学习是锤子,而世间万物不都是钉子。



# 回答二

作者:莫笑傅立叶

来源链接:https://www.zhihu.com/question/451498156/answer/1802730183


有两个比较常见的场景:
1.追求可解释性的场景。
深度学习非常善于解决分类和回归问题,但对于什么影响了结果的解释很弱,如果实际业务场景中,对于解释性要求很高,诸如以下场景,那么深度学习往往被干翻。
2. 许多运筹优化场景
诸如调度,规划,分配问题,往往这类问题无法很好的转化为监督学习格式,因此常采用优化算法。在现在研究中,在求解过程中往往融合深度学习算法更好地求解,但总体而言,模型本身还不是深度学习为主干。

深度学习是一个非常好的求解思路,但不是唯一,甚至在落地时依旧问题很大。若将深度学习融合于优化算法,作为求解的一个部件,依旧有很大的用武之地。
总之,


# 回答三

作者:LinT

来源链接:https://www.zhihu.com/question/451498156/answer/1802516688

这个问题要分场景看。深度学习固然免去了特征工程的麻烦,但是在一些场景下应该很难应用:
  1. 应用对时延有高要求,而对精度没有那么高的要求,这时简单的模型可能是更好的选择;

  2. 一些数据类型,例如tabular数据,可能更适合使用基于树的模型等统计学习模型而不是深度学习模型;

  3. 模型决策有重大影响,例如安全相关、经济决策相关,要求模型具有可解释性,那么线性模型或者基于树的模型,相对深度学习是更好的选择;

  4. 应用场景决定了数据采集难,使用深度学习有过拟合的风险。

真实的应用都是从需求出发的,抛开需求(精度、时延、算力消耗)谈表现是不科学的。如果把问题中的『干翻』限定到某个指标上,可能讨论范围可以缩小一些。


公众号后台回复“目标检测综述”获取目标检测二十年综述下载~

△点击卡片关注极市平台,获取 最新CV干货

极市干货
数据集资源汇总: 90+深度学习开源数据集整理|包括目标检测、工业缺陷、图像分割等多个方向
实操教程 实操教程|Pytorch转ONNX详解一文解决样本不均衡(全)
CVPR 2022: CVPR'22 最新132篇论文分方向整理 CVPR'22 最新106篇论文分方向整理


CV技术社群邀请函 #

△长按添加极市小助手
添加极市小助手微信(ID : cvmart4)

备注:姓名-学校/公司-研究方向-城市(如:小极-北大-目标检测-深圳)


即可申请加入极市目标检测/图像分割/工业检测/人脸/医学影像/3D/SLAM/自动驾驶/超分辨率/姿态估计/ReID/GAN/图像增强/OCR/视频理解等技术交流群


每月大咖直播分享、真实项目需求对接、求职内推、算法竞赛、干货资讯汇总、与 10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企视觉开发者互动交流~



觉得有用麻烦给个在看啦~   
登录查看更多
2

相关内容

机器学习的一个分支,它基于试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的一系列算法。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
知识图谱在美团推荐场景中的应用
专知会员服务
63+阅读 · 2022年5月21日
【经典书】时间序列分析与预测导论,671页pdf
专知会员服务
147+阅读 · 2022年4月1日
深度学习在路由问题中的最新进展
专知会员服务
18+阅读 · 2022年3月6日
【经典书】图论,322页pdf
专知会员服务
122+阅读 · 2021年10月14日
专知会员服务
39+阅读 · 2021年9月30日
专知会员服务
47+阅读 · 2021年5月21日
内卷?谈谈AI算法人才职业发展
极市平台
0+阅读 · 2022年4月22日
一个案例,看懂如何分析活动效果
人人都是产品经理
0+阅读 · 2022年3月15日
慢sql治理经典案例分享
阿里技术
0+阅读 · 2022年2月28日
深度学习前人的精度很高了,该如何创新?
极市平台
2+阅读 · 2022年2月5日
四个方法,拯救你平淡的数据分析报告
人人都是产品经理
0+阅读 · 2021年12月19日
6 年大厂面试官,谈谈我对算法岗面试的一些看法
夕小瑶的卖萌屋
0+阅读 · 2021年11月16日
有粉丝想转行推荐算法,我的一些看法
图与推荐
1+阅读 · 2021年11月1日
你有哪些深度学习(rnn、cnn)调参的经验?
七月在线实验室
10+阅读 · 2019年3月27日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年6月21日
Arxiv
23+阅读 · 2022年2月4日
Arxiv
17+阅读 · 2022年1月11日
Arxiv
49+阅读 · 2021年9月11日
3D Deep Learning on Medical Images: A Review
Arxiv
12+阅读 · 2020年4月1日
Arxiv
92+阅读 · 2020年2月28日
VIP会员
相关VIP内容
知识图谱在美团推荐场景中的应用
专知会员服务
63+阅读 · 2022年5月21日
【经典书】时间序列分析与预测导论,671页pdf
专知会员服务
147+阅读 · 2022年4月1日
深度学习在路由问题中的最新进展
专知会员服务
18+阅读 · 2022年3月6日
【经典书】图论,322页pdf
专知会员服务
122+阅读 · 2021年10月14日
专知会员服务
39+阅读 · 2021年9月30日
专知会员服务
47+阅读 · 2021年5月21日
相关资讯
内卷?谈谈AI算法人才职业发展
极市平台
0+阅读 · 2022年4月22日
一个案例,看懂如何分析活动效果
人人都是产品经理
0+阅读 · 2022年3月15日
慢sql治理经典案例分享
阿里技术
0+阅读 · 2022年2月28日
深度学习前人的精度很高了,该如何创新?
极市平台
2+阅读 · 2022年2月5日
四个方法,拯救你平淡的数据分析报告
人人都是产品经理
0+阅读 · 2021年12月19日
6 年大厂面试官,谈谈我对算法岗面试的一些看法
夕小瑶的卖萌屋
0+阅读 · 2021年11月16日
有粉丝想转行推荐算法,我的一些看法
图与推荐
1+阅读 · 2021年11月1日
你有哪些深度学习(rnn、cnn)调参的经验?
七月在线实验室
10+阅读 · 2019年3月27日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
相关论文
Arxiv
0+阅读 · 2022年6月21日
Arxiv
23+阅读 · 2022年2月4日
Arxiv
17+阅读 · 2022年1月11日
Arxiv
49+阅读 · 2021年9月11日
3D Deep Learning on Medical Images: A Review
Arxiv
12+阅读 · 2020年4月1日
Arxiv
92+阅读 · 2020年2月28日
Top
微信扫码咨询专知VIP会员