北大开源了中文分词工具包,准确度远超Jieba,提供三个预训练模型

2019 年 1 月 9 日 量子位
车栗子 发自 凹非寺
量子位 报道 | 公众号 QbitAI

“土地,快告诉俺老孙,俺的金箍棒在哪?”

“大圣,您的金箍,棒就棒在特别适合您的发型。”

中文分词,是一门高深莫测的技术。不论对于人类,还是对于AI。

最近,北大开源了一个中文分词工具包,名为PKUSeg,基于Python。

工具包的分词准确率,远远超过THULAC结巴分词这两位重要选手。

 我们 [中出] 了个叛徒

除此之外,PKUSeg支持多领域分词,也支持用全新的标注数据来训练模型。

准确度对比

这次比赛,PKUSeg的对手有两位:

一位是来自清华的THULAC,一位是要“做最好的中文分词组件”的结巴分词。它们都是目前主流的分词工具。

测试环境是Linux,测试数据集是MSRA (新闻数据) 和CTB8 (混合型文本) 。

结果如下:

比赛用的评判标准,是第二届国际汉语分词评测比赛提供的分词评价脚本。

F分数错误率两项指标上,PKUSeg都明显优于另外两位对手。

食用方法

预训练模型

PKUSeg提供了三个预训练模型,分别是在不同类型的数据集上训练的。

一是用MSRA (新闻语料) 训练出的模型:
https://pan.baidu.com/s/1twci0QVBeWXUg06dK47tiA

二是用CTB8 (新闻文本及网络文本的混合型语料) 训练出的模型:
https://pan.baidu.com/s/1DCjDOxB0HD2NmP9w1jm8MA

三是在微博 (网络文本语料) 上训练的模型:
https://pan.baidu.com/s/1QHoK2ahpZnNmX6X7Y9iCgQ

 微博语料举栗

大家可以按照自己的需要,选择加载不同的模型。

除此之外,也可以用全新的标注数据,来训练新的模型。

代码示例

1代码示例1        使用默认模型及默认词典分词
2import pkuseg
3seg = pkuseg.pkuseg()                #以默认配置加载模型
4text = seg.cut('我爱北京天安门')    #进行分词
5print(text)

1代码示例2        设置用户自定义词典
2import pkuseg
3lexicon = ['北京大学''北京天安门']    #希望分词时用户词典中的词固定不分开
4seg = pkuseg.pkuseg(user_dict=lexicon)    #加载模型,给定用户词典
5text = seg.cut('我爱北京天安门')        #进行分词
6print(text)

1代码示例3
2import pkuseg
3seg = pkuseg.pkuseg(model_name='./ctb8')    #假设用户已经下载好了ctb8的模型并放在了'./ctb8'目录下,通过设置model_name加载该模型
4text = seg.cut('我爱北京天安门')            #进行分词
5print(text)

如果想自己训练一个新模型的话:

1代码示例5
2import pkuseg
3pkuseg.train('msr_training.utf8''msr_test_gold.utf8''./models', nthread=20)    #训练文件为'msr_training.utf8',测试文件为'msr_test_gold.utf8',模型存到'./models'目录下,开20个进程训练模型

欲知更详细的用法,可前往文底传送门。

快去试一下

PKUSeg的作者有三位,Ruixuan Luo (罗睿轩),Jingjing Xu (许晶晶) ,以及Xu Sun (孙栩) 。

工具包的诞生,也是基于其中两位参与的ACL论文

准确率又那么高,还不去试试?

GitHub传送门:
https://github.com/lancopku/PKUSeg-python

论文传送门:

http://www.aclweb.org/anthology/P12-1027

http://aclweb.org/anthology/P16-2092

加入社群

量子位AI社群开始招募啦,欢迎对AI感兴趣的同学,在量子位公众号(QbitAI)对话界面回复关键字“交流群”,获取入群方式;


此外,量子位专业细分群(自动驾驶、CV、NLP、机器学习等)正在招募,面向正在从事相关领域的工程师及研究人员。


进专业群请在量子位公众号(QbitAI)对话界面回复关键字“专业群”,获取入群方式。(专业群审核较严,敬请谅解)

诚挚招聘

量子位正在招募编辑/记者,工作地点在北京中关村。期待有才气、有热情的同学加入我们!相关细节,请在量子位公众号(QbitAI)对话界面,回复“招聘”两个字。

量子位 QbitAI · 头条号签约作者

վ'ᴗ' ի 追踪AI技术和产品新动态

喜欢就点「好看」吧 !



登录查看更多
5

相关内容

将一个汉字序列切分成一个一个单独的词
专知会员服务
155+阅读 · 2020年4月21日
专知会员服务
109+阅读 · 2020年3月12日
Transformer文本分类代码
专知会员服务
116+阅读 · 2020年2月3日
谷歌机器学习速成课程中文版pdf
专知会员服务
145+阅读 · 2019年12月4日
准确实用,7个优秀的开源中文分词库推荐
开源中国
5+阅读 · 2018年7月26日
【推荐】中文处理(BiLSTM分词)工具包FoolNLTK
机器学习研究会
6+阅读 · 2017年12月27日
HULAC:一个高效的中文词法分析工具包(清华)
全球人工智能
5+阅读 · 2017年11月12日
Revisiting CycleGAN for semi-supervised segmentation
Arxiv
3+阅读 · 2019年8月30日
Arxiv
12+阅读 · 2019年2月28日
Arxiv
22+阅读 · 2018年8月30日
Arxiv
4+阅读 · 2016年12月29日
VIP会员
相关VIP内容
专知会员服务
155+阅读 · 2020年4月21日
专知会员服务
109+阅读 · 2020年3月12日
Transformer文本分类代码
专知会员服务
116+阅读 · 2020年2月3日
谷歌机器学习速成课程中文版pdf
专知会员服务
145+阅读 · 2019年12月4日
Top
微信扫码咨询专知VIP会员