【导读】近日,大连理工大学的学生ArcherFMY针对近几年深度学习在计算机视觉领域的应用提供了一个非常详细的阅读清单。如果你在深度学习领域是一个新手,你可以会想知道如何从哪篇论文开始阅读学习,如果你是从事计算机视觉领域,这一份详细的paper list,包括显著目标检测、视觉目标跟踪、目标检测、目标定位、语义分割和场景解析、边缘检测、姿态估计、超分辨率、图像分类,建议你收藏,仔细学习。本文转载已得到作者授权。
Github 地址:
https://github.com/ArcherFMY/Paper_Reading_List
The goal of this document is to provide a reading list for Deep Learning in Computer Vision Field.
CVPR 2017 papers related to Attention Model
Paper List for Instance Aware Tasks
Salient Object Detection(显著目标检测)
Visual Object Tracking(视觉目标跟踪)
Object Detection(目标检测)
Object Localization(目标定位)
Semantic Segmentation and Scene Parsing(语义分割和场景解析)
Edge Detection(边缘检测)
Pose Estimation(姿态估计)
Super Resolution(超分辨率)
Image Classification(图像分类)
Others
Paper list.
Salient Object Detection(显著目标检测)
1. Visual Saliency Based on Multiscale Deep Features
Authors:Guanbin Li, Yizhou Yu
Pub:CVPR 2015
Links:https://sites.google.com/site/ligb86/mdfsaliency/
2. Saliency Detection by Multi-context Deep Learning
Authors:Rui Zhao, Wanli Ouyang, Hongsheng Li, Xiaogang Wang
Pub:CVPR 2015
Links:http://www.ee.cuhk.edu.hk/~rzhao/project/deepsal_cvpr15/zhaoOLWcvpr15.pdf
code:https://github.com/Robert0812/deepsaldet
3. Deep Networks for Saliency Detection via Local Estimation and Global Search
Authors:Lijun Wang, Huchuan Lu, Xiang Ruan, Ming-Hsuan Yang
Pub:CVPR 2015
Links:http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Wang_Deep_Networks_for_2015_CVPR_paper.pdf
code:https://drive.google.com/file/d/0B5rfGpkt3dDaVmhucE1jTVZGeTA/view
4. DHSNet: Deep Hierarchical Saliency Network for Salient Object Detection
Authors:Nian Liu, Junwei Han
Pub:CVPR 2016
Links:http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Liu_DHSNet_Deep_Hierarchical_CVPR_2016_paper.pdf
google drive:https://drive.google.com/file/d/0B1sbejbIJIW3RlJJY1NNNkFydEU/view
baiduyun:https://pan.baidu.com/s/1jIm8cfk
5. Deep Contrast Learning for Salient Object Detection
Authors:Guanbin Li, Yizhou Yu
Pub:CVPR 2016
project page:http://i.cs.hku.hk/~gbli/deep_saliency.html
6. Saliency Unified: A Deep Architecture for Simultaneous Eye Fixation Prediction and Salient Object Segmentation
Authors:Srinivas S S Kruthiventi, Vennela Gudisa, Jaley H Dholakiya and R. Venkatesh Babu
Pub:CVPR 2016
project page:http://val.serc.iisc.ernet.in/saliency-unified/
7. Deep Saliency with Encoded Low level Distance Map and High Level Features
Authors:Gayoung Lee, Yu-Wing Tai, Junmo Kim
Pub:CVPR 2016
Links:http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Lee_Deep_Saliency_With_CVPR_2016_paper.pdf
code:https://github.com/gylee1103/SaliencyELD
8. Recurrent Attentional Networks for Saliency Detection
Authors:Jason Kuen, Zhenhua Wang, Gang Wang
Pub:CVPR 2016
Links:http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Kuen_Recurrent_Attentional_Networks_CVPR_2016_paper.pdf
9. DeepSaliency: Multi-Task Deep Neural Network Model for Salient Object Detection
Authors:Xi Li, Liming Zhao, Lina Wei, Ming-Hsuan Yang, Fei Wu, Yueting Zhuang, Haibin Ling, Jingdong Wang
Pub:TIP 2016
Links:http://www.zhaoliming.net/research/deepsaliency
10. A Shape-Based Approach for Salient Object Detection Using Deep Learning
Authors:Jongpil Kim, Vladimir Pavlovic
Pub:ECCV 2016
Links:http://www.research.cs.rutgers.edu/~jpkim/papers/jpkim_eccv2016.pdf
Pre-computed Maps:http://www.research.cs.rutgers.edu/~jpkim/papers/resources/ssd_hs.tar.gz
11. Saliency Detection with Recurrent Fully Convolutional Networks
Authors:Linzhao Wang, Lijun Wang, Huchuan Lu, Pingping Zhang, Xiang Ruan
Pub:ECCV 2016
Links:https://www.researchgate.net/profile/Pingping_Zhang6/publication/308278832_Saliency_Detection_with_Recurrent_Fully_Convolutional_Networks/links/584b5da208aecb6bd8c157e0/Saliency-Detection-with-Recurrent-Fully-Convolutional-Networks.pdf
codes:https://drive.google.com/file/d/0B5rfGpkt3dDaODFRZ0ZXZjQyWDg/view
12. Deeply Supervised Salient Object Detection with Short Connections
Authors:Qibin Hou, Ming-Ming Cheng, Xiaowei Hu, Ali Borji, Zhuowen Tu, Philip Torr
Pub:CVPR 2017
Links:https://arxiv.org/abs/1611.04849
github:https://github.com/Andrew-Qibin/DSS0
13. Non-Local Deep Features for Salient Object Detection
Authors:Zhiming Luo, Akshaya Mishra , Andrew Achkar , Justin Eichel , Shaozi Li , Pierre-Marc.Jodoin
Pub:CVPR 2017
Links:https://sites.google.com/view/zhimingluo/nldf
14. Instance-Level Salient Object Segmentation
Authors:Guanbin Li, Yuan Xie, Liang Lin, Yizhou Yu
Pub:CVPR 2017
Links:https://arxiv.org/pdf/1704.03604.pdf
15. Learning to Detect Salient Objects with Image-level Supervision
Authors:Lijun Wang, Huchuan Lu, Yifan Wang, Mengyang Feng, Dong Wang, Baocai Yin , Xiang Ruan
Pub:CVPR 2017
Links:http://saliencydetection.net/duts/download/camera_ready.pdf
github:https://github.com/scott89/WSS
16. Deep Level Sets for Salient Object Detection
Authors:Ping Hu, Bing Shuai, Jun Liu, Gang Wang
Pub:CVPR 2017
Links:http://openaccess.thecvf.com/content_cvpr_2017/papers/Hu_Deep_Level_Sets_CVPR_2017_paper.pdf
17. Learning Uncertain Convolutional Features for Accurate Saliency Detection
Authors:Pingping Zhang, Dong Wang, Huchuan Lu, Hongyu Wang, Baocai Yin
Pub:ICCV 2017
Links:https://arxiv.org/abs/1708.02031
github:https://github.com/Pchank/caffe-sal
18. Amulet: Aggregating Multi-level Convolutional Features for Salient Object Detection
Authors:Pingping Zhang, Dong Wang, Huchuan Lu, Hongyu Wang, Xiang Ruan
Pub:ICCV 2017
Links:https://arxiv.org/abs/1708.02001
github:https://github.com/Pchank/caffe-sal
Visual Object Tracking(视觉目标跟踪)
Recommended Homepage---OTB Results. This shares results for more recent trackers.
https://github.com/foolwood/benchmark_results
Object Detection(目标检测)
Authors:Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik
Pub:CVPR 2014
Links:http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Girshick_Rich_Feature_Hierarchies_2014_CVPR_paper.pdf
github:https://github.com/rbgirshick/rcnn
2. Fast R-CNN
Authors:Ross Girshick
Pub:ICCV 2015
Links:http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Girshick_Fast_R-CNN_ICCV_2015_paper.pdf
github:https://github.com/rbgirshick/fast-rcnn
3. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
Authors:Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun
Pub:NIPS 2015
Links:http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf
matlab:https://github.com/ShaoqingRen/faster_rcnn
python:https://github.com/rbgirshick/py-faster-rcnn
pytorch:https://github.com/longcw/faster_rcnn_pytorch
4. Convolutional Feature Masking for Joint Object and Stuff Segmentation
Authors:Jifeng Dai, Kaiming He, Jian Sun
Pub:CVPR 2015
Links:http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Dai_Convolutional_Feature_Masking_2015_CVPR_paper.pdf
5. Instance-aware Semantic Segmentation via Multi-task Network Cascades
Authors:Jifeng Dai, Kaiming He, Jian Sun
Pub:CVPR 2016
Links:http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Dai_Instance-Aware_Semantic_Segmentation_CVPR_2016_paper.pdf
github:https://github.com/daijifeng001/MNC
6. R-FCN: Object Detection via Region-based Fully Convolutional Networks
Authors:Jifeng Dai, Yi Li, Kaiming He, Jian Sun
Pub:NIPS 2016
Links:https://arxiv.org/abs/1605.06409
github:https://github.com/daijifeng001/R-FCN
7. Feature Pyramid Networks for Object Detection
Authors:Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie
Pub:CVPR 2017
Links:https://arxiv.org/pdf/1612.03144.pdf
8. Mask R-CNN
Authors:Kaiming He, Georgia Gkioxari, Piotr Dollár, Ross Girshick
Pub:ICCV 2017
Links:https://arxiv.org/abs/1703.06870
9. A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection
Authors:Xiaolong Wang, Abhinav Shrivastava, Abhinav Gupta
Pub:CVPR 2017
Links:https://arxiv.org/abs/1704.03414
github:https://github.com/xiaolonw/adversarial-frcnn
10. Multiple Instance Detection Network with Online Instance Classifier Refinement
Authors:Peng Tang, Xinggang Wang, Xiang Bai, Wenyu Liu
Pub:CVPR 2017
Links:https://arxiv.org/abs/1704.00138
11. R-FCN-3000 at 30fps: Decoupling Detection and Classification
Authors:Bharat Singh, Hengdou Li, Abhishek Sharma and Larry S. Davis
Pub:Tech Report
Links:https://arxiv.org/abs/1712.01802
Object Localization(目标定位)
1. Simultaneous Detection and Segmentation
Authors:Bharath Hariharan, Pablo Arbeláez, Ross Girshick, Jitendra Malik
Pub:ECCV 2014
Links:https://arxiv.org/abs/1407.1808
2. Deep Self-Taught Learning for Weakly Supervised Object Localization
Authors:Zequn Jie, Yunchao Wei, Xiaojie Jin, Jiashi Feng, Wei Liu
Pub:CVPR 2017
Links:https://arxiv.org/abs/1704.05188
3. Learning Detection with Diverse Proposals
Authors:Samaneh Azadi, Jiashi Feng, Trevor Darrell
Pub:CVPR 2017
Links:https://arxiv.org/abs/1704.03533
4. Two-Phase Learning for Weakly Supervised Object Localization
Authors:Dahun Kim, Donghyeon Cho, Donggeun Yoo, In So Kweon
Pub:ICCV 2017
Links:https://arxiv.org/abs/1708.02108
5. Soft Proposal Networks for Weakly Supervised Object Localization
Authors:Yi Zhu, Yanzhao Zhou, Qixiang Ye, Qiang Qiu and Jianbin Jiao
Pub:ICCV 2017
Links:https://arxiv.org/abs/1709.01829
github:https://github.com/ZhouYanzhao/SPN
Semantic Segmentation and Scene Parsing(语义分割和场景解析)
1. Fully Convolutional Networks for Semantic Segmentation
Authors:Jonathan Long, Evan Shelhamer, Trevor Darrell
Pub:CVPR 2015
Links:https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf
2. Learning to Segment Object Candidates
Authors:Pedro O. Pinheiro, Ronan Collobert, Piotr Dollar
Pub:NIPS 2015
Links:http://papers.nips.cc/paper/5852-learning-to-segment-object-candidates.pdf
3. Learning to Refine Object Segments
Authors:Pedro O. Pinheiro , Tsung-Yi Lin , Ronan Collobert, Piotr Doll ́ar
Pub:arXiv 1603.08695
Links:https://arxiv.org/pdf/1603.08695.pdf
4. Conditional Random Fields as Recurrent Neural Networks
Authors:Shuai Zheng, Sadeep Jayasumana, Bernardino Romera-Paredes, Vibhav Vineet, ZhiZhong Su, Dalong Du, Chang Huang, and Philip H. S. Torr
Pub:ICCV 2015
Links:http://www.cv-foundation.org/openaccess/content_iccv_2015/html/Zheng_Conditional_Random_Fields_ICCV_2015_paper.html
5. Learning Deconvolution Network for Semantic Segmentation
Authors:Heonwoo Noh, Seunghoon Hong, Bohyung Han
Pub:ICCV 2015
Links:http://www.cv-foundation.org/openaccess/content_iccv_2015/html/Noh_Learning_Deconvolution_Network_ICCV_2015_paper.html
6. Instance-sensitive Fully Convolutional Networks
Authors:Jifeng Dai, Kaiming He, Yi Li, Shaoqing Ren, Jian Sun
Pub:ECCV 2016
Links:https://arxiv.org/abs/1603.08678
7. Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation
Authors:Golnaz Ghiasi, Charless C. Fowlkes
Pub:ECCV 2016
Links:https://link.springer.com/chapter/10.1007/978-3-319-46487-9_32
github:https://github.com/golnazghiasi/LRR
8. Attention to Scale: Scale-aware Semantic Image Segmentation
Authors:Liang-Chieh Chen, Yi Yang, Jiang Wang, Wei Xu
Pub:CVPR 2016
Links:http://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Chen_Attention_to_Scale_CVPR_2016_paper.html
deeplab:http://liangchiehchen.com/projects/DeepLab.html
9. RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation
Authors:Guosheng Lin, Anton Milan, Chunhua Shen, Ian Reid
Pub:CVPR 2017
Links:https://arxiv.org/abs/1611.06612
github:https://github.com/guosheng/refinenet
10. Pyramid Scene Parsing Network
Authors:Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, Jiaya Jia
Pub:CVPR 2017
Links:https://arxiv.org/abs/1612.01105
github:https://github.com/hszhao/PSPNet
11. Dilated Residual Networks
Authors:Fisher Yu, Vladlen Koltun, Thomas Funkhouser
Pub:CVPR 2017
Links:https://arxiv.org/abs/1705.09914
12. Fully Convolutional Instance-aware Semantic Segmentation
Authors:Yi Li, Haozhi Qi, Jifeng Dai, Xiangyang Ji, Yichen Wei
Pub:CVPR 2017
Links:https://arxiv.org/abs/1611.07709
github:https://github.com/msracver/FCIS
13. Full-Resolution Residual Networks for Semantic Segmentation in Street Scenes
Authors:Tobias Pohlen, Alexander Hermans, Markus Mathias, Bastian Leibe
Pub:CVPR 2017
Links:https://arxiv.org/abs/1611.08323
github:https://github.com/TobyPDE/FRRN
14. Object Region Mining with Adversarial Erasing: A Simple Classification toSemantic Segmentation Approach
Authors:Yunchao Wei, Jiashi Feng, Xiaodan Liang, Ming-Ming Cheng, Yao Zhao, Shuicheng Yan
Pub:CVPR 2017
Links:https://arxiv.org/abs/1703.08448
15. Not All Pixels Are Equal: Difficulty-Aware Semantic Segmentation via Deep Layer Cascade
Authors:Xiaoxiao Li, Ziwei Liu, Ping Luo, Chen Change Loy, Xiaoou Tang
Pub:CVPR 2017
Links:https://arxiv.org/abs/1704.01344
16. Semantic Segmentation with Reverse Attention
Authors:Qin Huang, Chunyang Xia, Wuchi Hao, Siyang Li, Ye Wang, Yuhang Song and C.-C. Jay Kuo
Pub:BMVC 2017
Links:https://arxiv.org/abs/1707.06426
code:https://drive.google.com/drive/folders/0By2w_AaM8Rzbllnc3JCQjhHYnM?usp=sharing
17. Predicting Deeper into the Future of Semantic Segmentation
Authors:Pauline Luc, Natalia Neverova, Camille Couprie, Jakob Verbeek and Yann LeCun
Pub:ICCV 2017
Links:https://arxiv.org/abs/1703.07684
project page:https://thoth.inrialpes.fr/people/pluc/iccv2017
18. Learning to Segment Every Thing
Authors:Ronghang Hu, Piotr Dollar, Kaiming He, Trevor Darrell, Ross Girshick
Pub:Tech Report
Links:https://arxiv.org/abs/1711.10370
Edge Detection(边缘检测)
1. Holistically-Nested Edge Detection
Authors:Saining Xie, Zhuowen Tu
Pub:ICCV 2015
Links:http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Xie_Holistically-Nested_Edge_Detection_ICCV_2015_paper.pdf
github:https://github.com/s9xie/hed
2. Richer Convolutional Features for Edge Detection
Authors:Yun Liu, Ming-Ming Cheng, Xiaowei Hu, Kai Wang, Xiang Bai
Pub:CVPR 2017
Links:https://arxiv.org/abs/1612.02103
project page:http://mmcheng.net/rcfedge/http://mmcheng.net/rcfedge/
3. CASENet: Deep Category-Aware Semantic Edge Detection
Authors:Zhiding Yu, Chen Feng, Ming-Yu Liu, Srikumar Ramalingam
Pub:CVPR 2017
Links:https://arxiv.org/abs/1705.09759
Pose Estimation(姿态估计)
1. Stacked Hourglass Networks for Human Pose Estimation
Authors:Alejandro Newell, Kaiyu Yang, and Jia Deng
Pub:ECCV 2016
Links:https://arxiv.org/abs/1603.06937
2. Multi-Context Attention for Human Pose Estimation
Authors:Xiao Chu, Wei Yang, Wanli Ouyang, Cheng Ma, Alan L. Yuille, Xiaogang Wang
Pub:CVPR 2017
Links:https://arxiv.org/abs/1702.07432
github:https://github.com/bearpaw/pose-attention
Super Resolution(超分辨率)
1. Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution
Authors:Wei-Sheng Lai, Jia-Bin Huang, Narendra Ahuja, Ming-Hsuan Yang
Pub:CVPR 2017
project page:http://vllab1.ucmerced.edu/~wlai24/LapSRN/
2. Image Super-Resolution via Deep Recursive Residual Network
Authors:Ying Tai, Jian Yang, and Xiaoming Liu
Pub:CVPR 2017
Links:https://www.researchgate.net/profile/Xiaoming_Liu8/publication/316017318_Image_Super-Resolution_via_Deep_Recursive_Residual_Network/links/58eda40b0f7e9b37ed14f5d7/Image-Super-Resolution-via-Deep-Recursive-Residual-Network.pdf
github:https://github.com/tyshiwo/DRRN_CVPR17
Image Classification(图像分类)
1. Going Deeper with Convolutions
Authors:Ying Tai, Jian Yang, and Xiaoming Liu
Pub:CVPR 2015
Links:http://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Szegedy_Going_Deeper_With_2015_CVPR_paper.html
2. Deep Residual Learning for Image Recognition
Authors:Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun
Pub:CVPR 2016
Links:https://arxiv.org/abs/1512.03385
github:https://github.com/KaimingHe/deep-residual-networks
3. Residual Attention Network for Image Classification
Authors:Fei Wang, Mengqing Jiang, Chen Qian, Shuo Yang, Cheng Li, Honggang Zhang, Xiaogang Wang, Xiaoou Tang
Pub:CVPR 2017
Links:https://arxiv.org/abs/1704.06904
github:https://github.com/buptwangfei/residual-attention-network
4. Aggregated Residual Transformations for Deep Neural Networks
Authors:Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He
Pub:CVPR 2017
Links:https://arxiv.org/abs/1611.05431
github:https://github.com/facebookresearch/ResNeXt
5. Densely Connected Convolutional Networks
Authors:Gao Huang, Zhuang Liu, Kilian Q. Weinberger
Pub:CVPR 2017
Links:https://arxiv.org/abs/1608.06993
github:https://github.com/liuzhuang13/DenseNet
6. Deep Pyramidal Residual Networks
Authors:Dongyoon Han, Jiwhan Kim, Junmo Kim
Pub:CVPR 2017
Links:https://arxiv.org/pdf/1610.02915.pdf
github:https://github.com/jhkim89/PyramidNet
Others
1. Object Skeleton Extraction in Natural Images by Fusing Scale-associated Deep Side Outputs
Authors:Wei Shen, Kai Zhao, Yuan Jiang, Yan Wang, Zhijiang Zhang, Xiang Bai
Pub:ICCV 2016
Links:http://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Shen_Object_Skeleton_Extraction_CVPR_2016_paper.html
github:https://github.com/zeakey/DeepSkeleton
2. AnchorNet: A Weakly Supervised Network to Learn Geometry-sensitive Features For Semantic Matching
Authors:David Novotny, DianeLarlus, Andrea Vedaldi
Pub:CVPR 2017
Links:https://arxiv.org/abs/1704.04749
3. SRN:Side-output Residual Network for Object Symmetry Detection in the Wild
Authors:Wei Ke, Jie Chen, Jianbin Jiao, Guoying Zhao and Qixiang Ye
Pub:CVPR 2017
Links:https://arxiv.org/abs/1703.02243
github:https://github.com/KevinKecc/SRN
4. Quality Aware Network for Set to Set Recognition
Authors:Yu Liu, Junjie Yan, Wanli Ouyang
Pub:CVPR 2017
Links:https://arxiv.org/abs/1704.03373
5. Multi-Scale Continuous CRFs as Sequential Deep Networks for Monocular Depth Estimation
Authors:Dan Xu, Elisa Ricci, Wanli Ouyang, Xiaogang Wang, Nicu Sebe
Pub:CVPR 2017
Links:https://arxiv.org/abs/1704.02157
github:https://github.com/danxuhk/ContinuousCRF-CNN
6. Learning Cross-Modal Deep Representations for Robust Pedestrian Detectio
Authors:Dan Xu, Wanli Ouyang, Elisa Ricci, Xiaogang Wang, Nicu Sebe
Pub:CVPR 2017
Links:https://arxiv.org/abs/1704.02431
7. Semi-Supervised Deep Learning for Monocular Depth Map Prediction
Authors:Yevhen Kuznietsov, Jörg Stückler, Bastian Leibe
Pub:CVPR 2017
Links:https://arxiv.org/abs/1702.02706
8. Detecting Visual Relationships with Deep Relational Networks
Authors:Bo Dai, Yuqi Zhang, Dahua Lin
Pub:CVPR 2017
Links:https://arxiv.org/pdf/1704.03114.pdf
github:https://github.com/doubledaibo/drnet
9. Annotating Object Instances with a Polygon-RNN
Authors:Lluis Castrejon, Kaustav Kundu, Raquel Urtasun, Sanja Fidler
Pub:CVPR 2017
Links:https://arxiv.org/abs/1704.05548
10. Weakly Supervised Cascaded Convolutional Networks
Authors:Ali Diba, Vivek Sharma, Ali Pazandeh, Hamed Pirsiavash, Luc Van Gool
Pub:CVPR 2017
Links:https://arxiv.org/abs/1611.08258
11. Full Resolution Image Compression with Recurrent Neural Networks
Authors:George Toderici, Damien Vincent, Nick Johnston, Sung Jin Hwang, David Minnen, Joel Shor, Michele Covell
Pub:CVPR 2017
Links:https://arxiv.org/abs/1608.05148
github:https://github.com/tensorflow/models/tree/master/compression
12. Few-Shot Object Recognition from Machine-Labeled Web Images
Authors:Zhongwen Xu, Linchao Zhu, Yi Yang
Pub:CVPR 2017
Links:https://arxiv.org/abs/1612.06152
13. UberNet: Training a `Universal' Convolutional Neural Network for Low-, Mid-, and High-Level Vision using Diverse Datasets and Limited Memory
Authors:Iasonas Kokkinos
Pub:CVPR 2017
Links:https://arxiv.org/abs/1609.02132
code:http://cvn.ecp.fr/ubernet/
14. Generating High-Quality Crowd Density Maps using Contextual Pyramid CNNs
Authors:Vishwanath A. Sindagi and Vishal M. Patel
Pub:ICCV 2017
Links:https://arxiv.org/abs/1708.00953
15. MemNet: A Persistent Memory Network for Image Restoration
Authors:Ying Tai, Jian Yang, Xiaoming Liu, Chunyan Xu
Pub:ICCV 2017
Links:https://arxiv.org/abs/1708.02209
githib:https://github.com/tyshiwo/MemNet
16. Data Distillation: Towards Omni-Supervised Learning
Authors:Ilija Radosavovic, Piotr Dollar, Ross Girshick, GeorgiaGkioxari and Kaiming He
Pub:Tech Report
Links:https://arxiv.org/abs/1712.04440
17. Non-local Neural Networks
Authors:Xiaolong Wang, Ross Girshick, Abhinav Gupta and Kaiming He
Pub:Tech Report
Links:https://arxiv.org/abs/1711.07971
参考链接:
https://github.com/ArcherFMY/Paper_Reading_List
-END-
专 · 知
人工智能领域主题知识资料查看获取:【专知荟萃】人工智能领域26个主题知识资料全集(入门/进阶/论文/综述/视频/专家等)
同时欢迎各位用户进行专知投稿,详情请点击:
【诚邀】专知诚挚邀请各位专业者加入AI创作者计划!了解使用专知!
请PC登录www.zhuanzhi.ai或者点击阅读原文,注册登录专知,获取更多AI知识资料!
请扫一扫如下二维码关注我们的公众号,获取人工智能的专业知识!
请加专知小助手微信(Rancho_Fang),加入专知主题人工智能群交流!
点击“阅读原文”,使用专知!