【FCS 人工智能专栏】基于不定核的大间隔聚类算法研究

2019 年 6 月 24 日 FCS

点击上方蓝字

关注我们

      核方法是机器学习领域中解决非线性学习问题的一种有效方法,大都要求核函数正定,然而,在实际问题中这样的要求常常很难满足;相反,在某些情况下,使用不定核往往能取得比正定核更好的效果,如基因识别、目标检测问题等。

      近年来,不定核问题越来越受到研究者们的关注,多种解决不定核分类问题的方法被提出并取得很好的效果,如谱变换方法、正定核替代策略等。然而,关于不定核聚类问题的研究却相对较少,现有基于核的聚类算法也大都基于正定核,不能直接处理核函数不定的情况。

      鉴于已有不定核方法在分类问题中的优异表现,本文希望借助这些方法研究基于不定核的聚类问题。具体来说,本文以经典的基于核的大间隔聚类模型(Maximum Margin Clustering,MMC)为基础,提出了一种基于不定核的大间隔聚类模型(IndefiniteKernel Maximum Margin Clustering,IKMMC)。IKMMC采取正定核替代策略,寻求一个正定核以逼近不定核,并将度量二者差异性的F-范数作为一个正则化项嵌入到MMC模型中,进而得到IKMMC模型。

      针对该模型,本文选取了迭代优化方法进行优化:首先给样本赋初始类别标记,在每轮迭代中,不定核聚类问题被转化为带有类平衡约束的不定核支持向量机(Indefinite Kernel Support Vector Machine,IKSVM)问题,并被进一步表达为半无限 规划(Semi-infinite Programming,SIP)形式求解;本轮优化得到的样本预测标记作 为下轮迭代的样本初始标记,直到样本预测错误率不再满足迭代条件;最后,IKMMC以最后一轮的样本预测标记作为聚类的最终结果。实验部分验证了IKMMC及其迭代优化算法的有效性。

      MMC模型主要用于两类样本聚类,为了使IKMMC能够适应更为复杂的多类情况,本文进一步提出了多类情况下的IKMMC模型,并给出了相关优化算法,通过在多个数据集上的实验证明了IKMMC及其优化算法在多类情况下依然有较好的性能。

文章精要

请长按下方二维码识别,阅读该文。

相关内容推荐:

【FCS优秀青年计算机科学家论坛】李宇峰:安全半监督学习综述 2019 13(4):669-676

CodeAttention:基于代码结构信息的代码注释自动生成 2019 13(3):565-578 

基于非负局部约束词汇树的指静脉图像检索  2019 13(2):318-332

基于标记分布学习的软视频行为解析  2019 13(2):302-317

基于迁移的人工上采样方法解决小类样本有限的类别不平衡问题  

基于贝叶斯双神经网络的推荐算法

基于分布式表示学习的社区搜索算法 

随机局部搜索求解最大可满足性问题的经验研究 2019 13(1):86-98

基于情感信息和神经网络模型的立场分析 2019 13(1):127-138 



Frontiers of Computer Science



Frontiers of Computer Science (FCS)是由教育部主管、高等教育出版社和北京航空航天大学共同主办、SpringerNature 公司海外发行的英文学术期刊。本刊于 2007 年创刊,双月刊,全球发行。主要刊登计算机科学领域具有创新性的综述论文、研究论文等。本刊主编为周志华教授,共同主编为熊璋教授。编委会及青年 AE 团队由国内外知名学者及优秀青年学者组成。本刊被 SCI、Ei、DBLP、INSPEC、SCOPUS 和中国科学引文数据库(CSCD)核心库等收录,为 CCF 推荐期刊;两次入选“中国科技期刊国际影响力提升计划”;入选“第4届中国国际化精品科技期刊”。




长按二维码关注Frontiers of Computer Science公众号

登录查看更多
1

相关内容

【经典书】机器学习:贝叶斯和优化方法,1075页pdf
专知会员服务
404+阅读 · 2020年6月8日
【经典书】机器学习高斯过程,266页pdf
专知会员服务
228+阅读 · 2020年5月2日
【人大】图实现算法综述与评测分析
专知会员服务
37+阅读 · 2020年4月28日
基于深度学习的多标签生成研究进展
专知会员服务
141+阅读 · 2020年4月25日
【新书】Python中的经典计算机科学问题,224页pdf
专知会员服务
144+阅读 · 2019年12月28日
AI综述专栏 | 非精确图匹配方法综述
人工智能前沿讲习班
8+阅读 · 2018年11月16日
基于样本选择的安全图半监督学习方法
FCS 12(1) 文章 | 知识图谱综述
FCS
8+阅读 · 2018年3月12日
动手写机器学习算法:K-Means聚类算法
七月在线实验室
5+阅读 · 2017年12月6日
机器学习(16)之支持向量机原理(二)软间隔最大化
机器学习算法与Python学习
6+阅读 · 2017年9月8日
Arxiv
8+阅读 · 2019年2月15日
Arxiv
12+阅读 · 2018年1月12日
VIP会员
相关VIP内容
【经典书】机器学习:贝叶斯和优化方法,1075页pdf
专知会员服务
404+阅读 · 2020年6月8日
【经典书】机器学习高斯过程,266页pdf
专知会员服务
228+阅读 · 2020年5月2日
【人大】图实现算法综述与评测分析
专知会员服务
37+阅读 · 2020年4月28日
基于深度学习的多标签生成研究进展
专知会员服务
141+阅读 · 2020年4月25日
【新书】Python中的经典计算机科学问题,224页pdf
专知会员服务
144+阅读 · 2019年12月28日
相关资讯
AI综述专栏 | 非精确图匹配方法综述
人工智能前沿讲习班
8+阅读 · 2018年11月16日
基于样本选择的安全图半监督学习方法
FCS 12(1) 文章 | 知识图谱综述
FCS
8+阅读 · 2018年3月12日
动手写机器学习算法:K-Means聚类算法
七月在线实验室
5+阅读 · 2017年12月6日
机器学习(16)之支持向量机原理(二)软间隔最大化
机器学习算法与Python学习
6+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员