CVPR2020 | 商汤-港中文等提出PV-RCNN:3D目标检测新网络

2020 年 4 月 17 日 专知

论文:https://arxiv.org/abs/1912.13192

代码:https://github.com/sshaoshuai/PCDet

本文的特征提取方式充分利用的3D voxel卷积和基于点的pointnet卷积方式。其中作者给出的解释是3D voxel卷积高效,而point-based的方法感受野可变,因此结合了这两种检测方法的优点。

  • 该方法是一个两阶段的方法, 第一阶段提proposals,第二阶段为refine

  • 该方法远远好于KITTI其他的方法,在精度的表现上看。

一个简单的过程如下,盲猜为多尺度特征融合到key-point上的一个创新工作。


专知便捷查看

便捷下载,请关注专知公众号(点击上方蓝色专知关注)

  • 后台回复“PVRCNN” 就可以获取商汤-港中文等提出PV-RCNN:3D目标检测新网络》专知下载链接

专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取5000+AI主题干货知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程资料和与专家交流咨询
点击“ 阅读原文 ”,了解使用 专知 ,查看获取5000+AI主题知识资源
登录查看更多
0

相关内容

【文献综述】深度学习目标检测方法及其主流框架综述
专知会员服务
118+阅读 · 2020年6月26日
【CVPR 2020-商汤】8比特数值也能训练卷积神经网络模型
专知会员服务
25+阅读 · 2020年5月7日
一份循环神经网络RNNs简明教程,37页ppt
专知会员服务
172+阅读 · 2020年5月6日
【CVPR2020-港中文】 图像识别中的自注意力探索
专知会员服务
55+阅读 · 2020年4月29日
【CVPR2020】视觉推理-可微自适应计算时间
专知会员服务
12+阅读 · 2020年4月28日
3D目标检测进展综述
专知会员服务
191+阅读 · 2020年4月24日
专知会员服务
160+阅读 · 2020年4月21日
【CVPR2020-百度】用于视觉识别的门控信道变换
专知会员服务
12+阅读 · 2020年3月30日
106页《深度CNN-目标检测》综述进展论文
专知
4+阅读 · 2018年9月30日
Deformable Style Transfer
Arxiv
14+阅读 · 2020年3月24日
Mesh R-CNN
Arxiv
4+阅读 · 2019年6月6日
Arxiv
12+阅读 · 2019年1月24日
Panoptic Feature Pyramid Networks
Arxiv
3+阅读 · 2019年1月8日
Arxiv
7+阅读 · 2018年1月24日
VIP会员
相关VIP内容
【文献综述】深度学习目标检测方法及其主流框架综述
专知会员服务
118+阅读 · 2020年6月26日
【CVPR 2020-商汤】8比特数值也能训练卷积神经网络模型
专知会员服务
25+阅读 · 2020年5月7日
一份循环神经网络RNNs简明教程,37页ppt
专知会员服务
172+阅读 · 2020年5月6日
【CVPR2020-港中文】 图像识别中的自注意力探索
专知会员服务
55+阅读 · 2020年4月29日
【CVPR2020】视觉推理-可微自适应计算时间
专知会员服务
12+阅读 · 2020年4月28日
3D目标检测进展综述
专知会员服务
191+阅读 · 2020年4月24日
专知会员服务
160+阅读 · 2020年4月21日
【CVPR2020-百度】用于视觉识别的门控信道变换
专知会员服务
12+阅读 · 2020年3月30日
相关论文
Deformable Style Transfer
Arxiv
14+阅读 · 2020年3月24日
Mesh R-CNN
Arxiv
4+阅读 · 2019年6月6日
Arxiv
12+阅读 · 2019年1月24日
Panoptic Feature Pyramid Networks
Arxiv
3+阅读 · 2019年1月8日
Arxiv
7+阅读 · 2018年1月24日
Top
微信扫码咨询专知VIP会员