腾讯战略投资,燧原科技首款AI训练芯片出炉:性能超越V100

2019 年 12 月 11 日 机器之心

机器之心报道

作者:李泽南

由腾讯领投、融资累计超过 6 亿元的 AI 芯片公司燧原科技,终于发布了自己的首款产品。
12 月 11 日,燧原科技在上海举办了成立以来的首场发布会,推出了完全自主研发的首款 AI 训练芯片「邃思 DTU」,以及搭载该芯片的 AI 加速卡云燧 T10。燧原科技的新产品,被认为是目前业内性能最为强大的 AI 训练芯片。


在发布会上,燧原科技创始人、CEO 赵立东展望了燧原投身 AI 芯片研发的愿景: 「燧原科技希望能做大芯片、拼硬科技,对标世界最顶级的技术和公司。


燧原科技 CEO 赵立东手持云燧 T10。


虽然人工智能的概念很早就已被提出,但从集成电路、半导体芯片的角度来看,AI 计算有着自己的特点,基于机器学习算法,硬件架构需要进行创新。

燧原希望在 AI 训练芯片这一高端市场上首先发力。 目前在这一方向上,GPU 几乎处于垄断地位。 今年 11 月,OpenAI 发布了最新 AI 算力报告,其中提出 AI 算力的需求每年提升 10 倍——即使在摩尔定律没有放缓的情况下,现有芯片也无法满足这样的需求。 这意味着人工智能芯片需要新的架构,从而为芯片公司创造了机会。


最强量产 AI 训练芯片


邃思 DTU 被认为是目前最为强大的量产 AI 训练芯片,其采用格罗方德(GlobalFoundries)12nm FinFET 工艺打造,面积高达 480mm²,主芯片包含 141 亿个晶体管,同时还采用了先进的 2.5D 立体封装技术,进一步提高了芯片的信号传输速度和带宽。


燧原科技创始人兼 COO 张亚林展示邃思 DTU。


与之一同发布的首款人工智能训练卡「云燧 T10」,是一块面向云端数据中心的 AI 加速卡。 它采用标准双槽位,率先支持 PCIe 4.0,功耗为 225W。 其独特的 25GB 双向背板互联方案有别于业内常见的 InfiniBand 并联方式,能在相同的互联带宽下,较大幅度地降低组网的复杂度和成本。


燧原表示,T10 的单卡单精度(FP32)算力达到了 20TFLOPS,且支持单精度 FP32 和半精度 BF16 的混合精度计算。 相比之下,英伟达最新的 Tesla V100S 的单精度算力为 16.4TFLOPS,而另一方面,云邃 T10 的功耗更低,这意味着它要比 V100 具有更高的效率。


云燧 T10 支持半精度 BF16 运算,并且达到了 80TFLOPS 的算力,这也让它成为了谷歌 TPU 以外,业界首款支持这种运算方式的 AI 加速卡。 「这款芯片是燧原科技完全自主设计完成的,完全支持所有已有的、及未来即将出现的 AI 算法。 」燧原科技创始人兼 COO 张亚林说道。


在发布会上,燧原科技表示 T10 已经实现量产,并将于 2020 年第一季度上市。



与目前很多初创公司发布的 AI 芯片相比,基于数据中心的人工智能训练芯片相比推理芯片难度更高,通常要求芯片具有高算力、低功耗、强互联等特性,并支持多种训练算法,以满足通用性和能耗的要求。 邃思芯片基于可重构芯片的设计理念,其计算核心包含 32 个通用可扩展神经元处理器(SIP),每 8 个 SIP 组合成 4 个可扩展智能计算群(SIC)。 SIC 之间通过 HBM 实现高速互联,通过片上调度算法,数据在迁移中完成计算,实现了 SIP 利用率最大化。


在 AI 芯片的大规模应用中,并联效率至关重要,燧原在发布会上特别介绍了芯片中使用的高速互联技术。 为实现大规模训练集群的高效训练,燧原科技提出了 200GB 双向 ESL 互联技术,大幅降低了系统复杂度和成本。


在发布会上,燧原还介绍了云燧 T10 的扩展效率: 在并联多达 1024 张卡时,燧原的板卡仍可以达到超过 70% 的效率(理论最高可以达的效率为 86%)。

8 卡互联的云邃 T10 服务器(左),以及基于云邃 T11 的服务器(右)。


除此以外,燧原还计划推出基于 OCP 加速模组(OAM)的「云燧 T11」。 它是 T10 的更强大版本,功耗 300W,将于明年 5-6 月正式推出,直接对标 Tesla V100 的 NVLink 版。


模型迁移零成本


在硬件之外,燧原同时发布了计算及编程平台「驭算」,支持主流深度学习框架,提供完整的编译、调试、调优工具链,并在硬件层开放 SDK,为深度开发者提供细粒度算力编程接口。 针对大规模模型集群训练,如目前流行的 BERT 等,提供分布式调度系统,并针对 ESL 并联进行优化。


「我们的软件平台支持 C/C++语言算子编程。 可向开发者针对特定场景提供算子级、指令级优化。 在未来,我们还会开放更为底层的硬件驱动。 」张亚林表示。


目前,燧原的编程平台已经完全支持 TensorFlow,公司还计划在明年上半年对 PyTorch、MXNet、ONNX 等主流深度学习框架提供支持。 在软件方面,燧原希望做到对开发者来说「迁移零成本」。


接受腾讯战略投资


燧原科技成立于 2018 年 3 月,这家公司已在上海和北京设立了研发中心,公司创始人赵立东、张亚林等人此前均任职于 AMD。 目前这家公司已有 207 名员工。


迄今为止,燧原科技已经历了三轮融资,其中去年 8 月 7 日由腾讯领投的 Pre A 轮最为引人关注,其时融资额高达 3.4 亿元,也让燧原成为了首家和唯一一家被腾讯战略投资的国内 AI 芯片初创公司。 今年 6 月,燧原科技又获得了 3 亿元人民币的 A 轮融资,红点中国领投,海松资本、云和资本、腾讯投资、阳光融汇资本、信中利资本跟投。


「我们选择接受来自腾讯的战略投资,是因为腾讯在数据、业务场景、算法团队等方面具备优势,」赵立东在发布会上表示。 「为了实现业务落地零的突破,我们必须寻求合作,只有这样才能让落地的第一步走成功。


相比打造出成型芯片再寻找客户,燧原科技与腾讯展开全面合作的行动减少了数个月的研发时间。


「腾讯提出的『产品热启动』概念与我们不谋而合。 在邃思芯片落地的过程中,我们与腾讯的开发者们进行了技术交流,这使得我们可以在软件优化过程中有的放矢了解需求和改进。 」赵立东说道。


强大完整的团队,加上高效的合作,让燧原科技的第一款芯片就超越了当前业界主流产品的性能,创造了研发到量产仅用 20 个月的新纪录:

邃思芯片于 2018 年 4 月开始研发,内部代号狮子座,在今年 5 月 30 日流片成功。到 9 月 19 日,8 颗芯片全部点亮,完成实验室测试,开始软硬件联调。所有时间节点全部在最初计划的范围之内。


下一阶段,燧原将面向几大业务领域推广自己的产品:


  • 云服务公司(包括公有云、私有云、混合云)

  • 各传统领域的行业服务公司(金融、保险、医疗、交通等)

  • AI 超算中心和智慧城市


「目前燧原科技已与腾讯针对通用人工智能应用场景的项目开展密切的合作,未来也将会扩展到更多 AI 应用场景,」赵立东表示。 「以此次发布的新产品作为开端,燧原将提供更多具有高性价比、高能效比、开源开放的完整解决方案,也可以针对不同应用场景的差异化需求提供软硬件定制化的支持和服务。


燧原的芯片发布引起了各界关注, 清华大学微电子所所长魏少军在发布会上表示: 「燧原芯片研发迈出第一步的成功,要归功于团队的完整性,足够强大的实力,以及时机和方法的正确。 中国今天的集成电路领域热度很高,但要发展集成电路需要足够的基础条件。 邃思 DTU 是近年来能够在全球引起高度关注的芯片。


随着训练芯片的量产,燧原科技下一步研发计划也已经浮出水面。 这家公司计划在未来推出自己的推断芯片系列,构建云端 AI 模型训练和推理计算的完整解决方案。



机器之心「SOTA模型」22大领域、127个任务,机器学习 SOTA 研究一网打尽。


点击阅读原文,立即访问

登录查看更多
0

相关内容

华为发布《自动驾驶网络解决方案白皮书》
专知会员服务
126+阅读 · 2020年5月22日
阿里巴巴达摩院发布「2020十大科技趋势」
专知会员服务
107+阅读 · 2020年1月2日
【德勤】中国人工智能产业白皮书,68页pdf
专知会员服务
304+阅读 · 2019年12月23日
2019中国硬科技发展白皮书 193页
专知会员服务
83+阅读 · 2019年12月13日
【白皮书】“物联网+区块链”应用与发展白皮书-2019
专知会员服务
94+阅读 · 2019年11月13日
阿里云发布机器学习平台PAI v3.0
雷锋网
13+阅读 · 2019年3月22日
CBInsights公布32家AI独角兽名单:中国10家美国17家
1号机器人网
5+阅读 · 2019年2月18日
Doubly Attentive Transformer Machine Translation
Arxiv
4+阅读 · 2018年7月30日
Arxiv
3+阅读 · 2018年6月1日
Arxiv
10+阅读 · 2018年2月4日
Arxiv
8+阅读 · 2018年1月25日
VIP会员
相关VIP内容
相关论文
Top
微信扫码咨询专知VIP会员