特别地,我们将矩张量反演(一种地震反演问题)作为主要的激励应用,并通过各种统计和物理指标证明了TL损失的反演性能的改善,用于一系列日益复杂的反演和错误描述的场景。与此同时,我们讨论了几个更广泛的方法论问题。首先,在缺乏基于TL的可能性的可处理表达的情况下,我们使用吉布斯后验的概念构建了一致的前验到后验更新。然后,我们通过一些统计评分规则和等级统计,以及特定应用的物理标准,通过更广泛的探索,在错误指定的设置中,什么构成“好的”推断,比较不同损失函数对吉布斯后验的影响。为了将我们的广义(吉布斯)贝叶斯方法与更传统的贝叶斯设置联系起来,我们还对随机噪声信号之间的传输-拉格朗日距离的统计特性进行了分析和数值研究。
作为对贝叶斯反演的补充,我们还证明了频率回归最优传输距离的效用。我们研究了带有TL损失的线性回归模型,描述了相关的混合整数优化问题的几何形状,并提出了利用其底层结构的专用算法。然后我们比较TL线性回归和经典线性回归在几个应用。最后,我们讨论了TL距离的潜在泛化,包括通过时间序列嵌入的“shape”概念,以及拟议框架的可能扩展到其他形式的模型错误说明。
https://dspace.mit.edu/handle/1721.1/143171
专知便捷查看
便捷下载,请关注专知公众号(点击上方蓝色专知关注)
后台回复“RBOT” 就可以获取《【MIT博士论文】通过最优传输不匹配措施的鲁棒贝叶斯推断:应用和算法》专知下载链接