在C++平台上部署PyTorch模型流程+踩坑实录

2020 年 11 月 14 日 CVer

点击上方“CVer”,选择加"星标"置顶

重磅干货,第一时间送达

本文者:火星少女  |  编辑:极市平台

https://zhuanlan.zhihu.com/p/146453159

本文已由原作者授权,不得擅自二次转载

导读

 

本文主要讲解如何将pytorch的模型部署到c++平台上的模型流程,按顺序分为四大块详细说明了模型转换、保存序列化模型、C ++中加载序列化的PyTorch模型以及执行Script Module。

最近因为工作需要,要把pytorch的模型部署到c++平台上,基本过程主要参照官网的教学示例,期间发现了不少坑,特此记录。


1.模型转换

libtorch不依赖于python,python训练的模型,需要转换为script model才能由libtorch加载,并进行推理。在这一步官网提供了两种方法:


方法一:Tracing

这种方法操作比较简单,只需要给模型一组输入,走一遍推理网络,然后由torch.ji.trace记录一下路径上的信息并保存即可。示例如下:

import torch
import torchvision

# An instance of your model.
model = torchvision.models.resnet18()

# An example input you would normally provide to your model's forward() method.
example = torch.rand(1, 3, 224, 224)

# Use torch.jit.trace to generate a torch.jit.ScriptModule via tracing.
traced_script_module = torch.jit.trace(model, example)

缺点是如果模型中存在控制流比如if-else语句,一组输入只能遍历一个分支,这种情况下就没办法完整的把模型信息记录下来。


方法二:Scripting

直接在Torch脚本中编写模型并相应地注释模型,通过torch.jit.script编译模块,将其转换为ScriptModule。示例如下:

class MyModule(torch.nn.Module):
def __init__(self, N, M):
super(MyModule, self).__init__()
self.weight = torch.nn.Parameter(torch.rand(N, M))

def forward(self, input):
if input.sum() > 0:
output = self.weight.mv(input)
else:
output = self.weight + input
return output

my_module = MyModule(10,20)
sm = torch.jit.script(my_module)

forward方法会被默认编译,forward中被调用的方法也会按照被调用的顺序被编译

如果想要编译一个forward以外且未被forward调用的方法,可以添加 @torch.jit.export.


如果想要方法不被编译,可使用

@torch.jit.ignore(https://pytorch.org/docs/master/generated/torch.jit.ignore.html#torch.jit.ignore) 

或者 @torch.jit.unused(https://pytorch.org/docs/master/generated/torch.jit.unused.html#torch.jit.unused)


# Same behavior as pre-PyTorch 1.2
@torch.jit.script
def some_fn():
return 2

# Marks a function as ignored, if nothing
# ever calls it then this has no effect
@torch.jit.ignore
def some_fn2():
return 2

# As with ignore, if nothing calls it then it has no effect.
# If it is called in script it is replaced with an exception.
@torch.jit.unused
def some_fn3():
import pdb; pdb.set_trace()
return 4

# Doesn't do anything, this function is already
# the main entry point
@torch.jit.export
def some_fn4():
return 2

在这一步遇到好多坑,主要原因可归为一下两点


1. 不支持的操作

TorchScript支持的操作是python的子集,大部分torch中用到的操作都可以找到对应实现,但也存在一些尴尬的不支持操作,详细列表可见https://pytorch.org/docs/master/jit_unsupported.html#jit-unsupported,下面列一些我自己遇到的操作:

1)参数/返回值不支持可变个数,例如

def __init__(self, **kwargs):

或者

if output_flag == 0:
return reshape_logits
else:
loss = self.loss(reshape_logits, term_mask, labels_id)
return reshape_logits, loss


2)各种iteration操作

eg1.

layers = [int(a) for a in layers]

报错torch.jit.frontend.UnsupportedNodeError: ListComp aren’t supported

可以改成:

for k in range(len(layers)):
layers[k] = int(layers[k])

eg2.

seq_iter = enumerate(scores)
try:
_, inivalues = seq_iter.__next__()
except:
_, inivalues = seq_iter.next()

eg3.

line = next(infile)


3)不支持的语句

eg1. 不支持continue

torch.jit.frontend.UnsupportedNodeError: continue statements aren’t supported

eg2. 不支持try-catch

torch.jit.frontend.UnsupportedNodeError: try blocks aren’t supported

eg3. 不支持with语句


4)其他常见op/module

eg1. torch.autograd.Variable

解决:使用torch.ones/torch.randn等初始化+.float()/.long()等指定数据类型。

eg2. torch.Tensor/torch.LongTensor etc.

解决:同上

eg3. requires_grad参数只在torch.tensor中支持,torch.ones/torch.zeros等不可用

eg4. tensor.numpy()

eg5. tensor.bool()

解决:tensor.bool()用tensor>0代替

eg6. self.seg_emb(seg_fea_ids).to(embeds.device)

解决:需要转gpu的地方显示调用.cuda()

总之一句话:除了原生python和pytorch以外的库,比如numpy什么的能不用就不用,尽量用pytorch的各种API


2. 指定数据类型

1)属性,大部分的成员数据类型可以根据值来推断,空的列表/字典则需要预先指定

from typing import Dict

class MyModule(torch.nn.Module):
my_dict: Dict[str, int]

def __init__(self):
super(MyModule, self).__init__()
# This type cannot be inferred and must be specified
self.my_dict = {}

# The attribute type here is inferred to be `int`
self.my_int = 20

def forward(self):
pass

m = torch.jit.script(MyModule())

2)常量,使用Final关键字

try:
from typing_extensions import Final
except:
# If you don't have `typing_extensions` installed, you can use a
# polyfill from `torch.jit`.
from torch.jit import Final

class MyModule(torch.nn.Module):

my_constant: Final[int]

def __init__(self):
super(MyModule, self).__init__()
self.my_constant = 2

def forward(self):
pass

m = torch.jit.script(MyModule())

3)变量。默认是tensor类型且不可变,所以非tensor类型必须要指明

def forward(self, batch_size:int, seq_len:int, use_cuda:bool):


方法三:Tracing and Scriptin混合

一种是在trace模型中调用script,适合模型中只有一小部分需要用到控制流的情况,使用实例如下:

import torch

@torch.jit.script
def foo(x, y):
if x.max() > y.max():
r = x
else:
r = y
return r


def bar(x, y, z):
return foo(x, y) + z

traced_bar = torch.jit.trace(bar, (torch.rand(3), torch.rand(3), torch.rand(3)))

另一种情况是在script module中用tracing生成子模块,对于一些存在script module不支持的python feature的layer,就可以把相关layer封装起来,用trace记录相关layer流,其他layer不用修改。使用示例如下:

import torch
import torchvision

class MyScriptModule(torch.nn.Module):
def __init__(self):
super(MyScriptModule, self).__init__()
self.means = torch.nn.Parameter(torch.tensor([103.939, 116.779, 123.68])
.resize_(1, 3, 1, 1))
self.resnet = torch.jit.trace(torchvision.models.resnet18(),
torch.rand(1, 3, 224, 224))

def forward(self, input):
return self.resnet(input - self.means)

my_script_module = torch.jit.script(MyScriptModule())


2.保存序列化模型

如果上一步的坑都踩完,那么模型保存就非常简单了,只需要调用save并传递一个文件名即可,需要注意的是如果想要在gpu上训练模型,在cpu上做inference,一定要在模型save之前转化,再就是记得调用model.eval(),形如

gpu_model.eval()
cpu_model = gpu_model.cpu()
sample_input_cpu = sample_input_gpu.cpu()
traced_cpu = torch.jit.trace(traced_cpu, sample_input_cpu)
torch.jit.save(traced_cpu, "cpu.pth")

traced_gpu = torch.jit.trace(traced_gpu, sample_input_gpu)
torch.jit.save(traced_gpu, "gpu.pth")


3.C++ load训练好的模型

要在C ++中加载序列化的PyTorch模型,必须依赖于PyTorch C ++ API(也称为LibTorch)。libtorch的安装非常简单,只需要在pytorch官网( https://pytorch.org/ )下载对应版本,解压即可。会得到一个结构如下的文件夹。

libtorch/
bin/
include/
lib/
share/

然后就可以构建应用程序了,一个简单的示例目录结构如下:

example-app/
CMakeLists.txt
example-app.cpp

example-app.cpp和CMakeLists.txt的示例代码分别如下:

#include <torch/script.h> // One-stop header.
#include <iostream>#include <memory>
int main(int argc, const char* argv[]) {
if (argc != 2) {
std::cerr << "usage: example-app <path-to-exported-script-module>\n";
return -1;
}


torch::jit::script::Module module;
try {
// Deserialize the ScriptModule from a file using torch::jit::load().
module = torch::jit::load(argv[1]);
}
catch (const c10::Error& e) {
std::cerr << "error loading the model\n";
return -1;
}

std::cout << "ok\n";
}


cmake_minimum_required(VERSION 3.0 FATAL_ERROR)
project(custom_ops)

find_package(Torch REQUIRED)

add_executable(example-app example-app.cpp)
target_link_libraries(example-app "${TORCH_LIBRARIES}")
set_property(TARGET example-app PROPERTY CXX_STANDARD 14)

至此,就可以运行以下命令从example-app/文件夹中构建应用程序啦:

mkdir build
cd build
cmake -DCMAKE_PREFIX_PATH=/path/to/libtorch ..
cmake --build . --config Release

其中/path/to/libtorch是之前下载后的libtorch文件夹所在的路径。这一步如果顺利能够看到编译完成100%的提示,下一步运行编译生成的可执行文件,会看到“ok”的输出,可喜可贺!


4. 执行Script Module

终于到最后一步啦!下面只需要按照构建输入传给模型,执行forward就可以得到输出啦。一个简单的示例如下:

// Create a vector of inputs.
std::vector<torch::jit::IValue> inputs;
inputs.push_back(torch::ones({1, 3, 224, 224}));

// Execute the model and turn its output into a tensor.
at::Tensor output = module.forward(inputs).toTensor();
std::cout << output.slice(/*dim=*/1, /*start=*/0, /*end=*/5) << '\n';

前两行创建一个torch::jit::IValue的向量,并添加单个输入. 使用torch::ones()创建输入张量,等效于C ++ API中的torch.ones。然后,运行script::Moduleforward方法,通过调用toTensor()将返回的IValue值转换为张量。C++对torch的各种操作还是比较友好的,通过torch::或者后加_的方法都可以找到对应实现,例如

torch::tensor(input_list[j]).to(at::kLong).resize_({batch, 128}).clone()
//torch::tensor对应pytorch的torch.tensor; at::kLong对应torch.int64;resize_对应resize

最后check一下确保c++端的输出和pytorch是一致的就大功告成啦~

踩了无数坑,薅掉了无数头发,很多东西也是自己一点点摸索的,如果有错误欢迎指正!


参考资料:

PyTorch C++ API - PyTorch master document

Torch Script - PyTorch master documentation

文章地址:

https://pytorch.org/cppdocs/

https://pytorch.org/tutorials/advanced/cpp_export.html


下载:CVPR /  ECCV 2020开源代码


在CVer公众号后台回复:CVPR2020,即可下载CVPR 2020代码开源的论文合集

在CVer公众号后台回复:ECCV2020,即可下载ECCV 2020代码开源的论文合集


重磅!CVer-PyTorch交流群成立


扫码添加CVer助手,可申请加入CVer-PyTorch 微信交流群,目前已满700+人


同时也可申请加入CVer大群和细分方向技术群,细分方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch和TensorFlow等群。


一定要备注:研究方向+地点+学校/公司+昵称(如PyTorch+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群


▲长按加微信群


▲长按关注CVer公众号

整理不易,请给CVer点赞和在看

登录查看更多
0

相关内容

基于Lua语言的深度学习框架 github.com/torch
【2020干货书】Python3基础导论介绍,98页pdf
专知会员服务
101+阅读 · 2020年10月11日
【2020新书】如何认真写好的代码和软件,318页pdf
专知会员服务
63+阅读 · 2020年3月26日
Transformer文本分类代码
专知会员服务
116+阅读 · 2020年2月3日
TensorFlow Lite指南实战《TensorFlow Lite A primer》,附48页PPT
专知会员服务
69+阅读 · 2020年1月17日
一网打尽!100+深度学习模型TensorFlow与Pytorch代码实现集合
《动手学深度学习》(Dive into Deep Learning)PyTorch实现
专知会员服务
119+阅读 · 2019年12月31日
Github项目推荐 | Pytorch TVM 扩展
AI研习社
11+阅读 · 2019年5月5日
百闻不如一码!手把手教你用Python搭一个Transformer
大数据文摘
18+阅读 · 2019年4月22日
PyTorch 1.0 稳定版正式发布!
新智元
3+阅读 · 2018年12月8日
【强烈推荐】浅谈将Pytorch模型从CPU转换成GPU
机器学习研究会
7+阅读 · 2017年12月24日
一次 PyTorch 的踩坑经历,以及如何避免梯度成为NaN
Pytorch还是Tensorflow?英伟达工程师帮你总结了
人工智能头条
5+阅读 · 2017年10月27日
Caffe 深度学习框架上手教程
黑龙江大学自然语言处理实验室
14+阅读 · 2016年6月12日
Arxiv
7+阅读 · 2018年8月21日
Arxiv
7+阅读 · 2018年6月1日
Arxiv
8+阅读 · 2018年3月20日
Arxiv
4+阅读 · 2016年12月29日
VIP会员
相关VIP内容
【2020干货书】Python3基础导论介绍,98页pdf
专知会员服务
101+阅读 · 2020年10月11日
【2020新书】如何认真写好的代码和软件,318页pdf
专知会员服务
63+阅读 · 2020年3月26日
Transformer文本分类代码
专知会员服务
116+阅读 · 2020年2月3日
TensorFlow Lite指南实战《TensorFlow Lite A primer》,附48页PPT
专知会员服务
69+阅读 · 2020年1月17日
一网打尽!100+深度学习模型TensorFlow与Pytorch代码实现集合
《动手学深度学习》(Dive into Deep Learning)PyTorch实现
专知会员服务
119+阅读 · 2019年12月31日
相关资讯
Github项目推荐 | Pytorch TVM 扩展
AI研习社
11+阅读 · 2019年5月5日
百闻不如一码!手把手教你用Python搭一个Transformer
大数据文摘
18+阅读 · 2019年4月22日
PyTorch 1.0 稳定版正式发布!
新智元
3+阅读 · 2018年12月8日
【强烈推荐】浅谈将Pytorch模型从CPU转换成GPU
机器学习研究会
7+阅读 · 2017年12月24日
一次 PyTorch 的踩坑经历,以及如何避免梯度成为NaN
Pytorch还是Tensorflow?英伟达工程师帮你总结了
人工智能头条
5+阅读 · 2017年10月27日
Caffe 深度学习框架上手教程
黑龙江大学自然语言处理实验室
14+阅读 · 2016年6月12日
Top
微信扫码咨询专知VIP会员