论文题目:How Does Knowledge Graph Embedding Extrapolate on Unseen Data: a Semantic Evidence View
作者:李韧, 曹亚男, 朱倩男, 毕冠群, 方芳, 柳毅, 李谦
论文概述:当前众多现象表明,知识图谱嵌入表示学习工作可以在外推场景下取得成功,即给定一个训练中未出现的三元组,模型依旧能表现出良好的预测效果,这种外推能力令人印象深刻。但已有工作大多集中于设计精巧的三元组建模函数,并没有对这种外推现象进行充分研究。因此本篇工作对以下两个问题进行了探讨:1. 知识图谱表示模型是如何进行外推的?2. 如何设计具备更强外推能力的知识图谱表示模型?一方面,我们从语义匹配的视角,在关系、实体和三元组层面上分别提出了三种语义证据,并通过对广泛的基线模型的实验分析,验证了这三种语义证据在模型外推方面的重要作用。另一方面,为了更好地利用外推信息,我们将三种语义证据融入到邻域模式中,设计了一种新颖的图神经网络模型用于学习知识图谱嵌入表示,称为语义证据-图神经网络(SE-GNN,Semantic Evidence-Graph Neural Network),以更显示、充分的方式对三种语义证据进行了建模。我们在知识图谱表示学习的基准数据集FB15k-237和WN18RR上进行了充分的实验,证明了我们模型的有效性,以及具备更强大的外推能力。
https://www.zhuanzhi.ai/paper/3c69a25cb115574601cf71f5f1fb7f61
专知便捷查看
便捷下载,请关注专知公众号(点击上方蓝色专知关注)
后台回复“SEGNN” 就可以获取《【AAAI2022】知识图谱表示模型是如何进行外推的?》专知下载链接