担心面部识别泄露隐私?多伦多大学图像「隐私过滤器」了解一下

2018 年 6 月 15 日 极市平台
↑ 点击蓝字关注极市平台 识别先机 创造未来


来源:机器之心

编译:李诗萌、张倩


论文链接:

https://joeybose.github.io/assets/adversarial-attacks-face.pdf


摘要:本文所述算法通过对抗式攻击在输入中添加几乎无法察觉的扰乱,从而达到使机器学习模型对输入进行错误分类的目的。尽管在图像分类模型中已经提出了许多不同的对抗式攻击策略,但一直难以打破目标检测的途径。本文作者提出的新策略可以通过使用对抗式生成器网络解决约束优化问题,制作对抗的例子。该方法快速而且可拓展,只需要通过训练好的生成器网络的正向通路制作对抗性样例。与许多攻击策略不同的是,本文所述的相同的训练后的生成器可以攻击新图像但不会明显优化它们。文中用 300-W 面部数据集对训练好的 Faster R-CNN 面部识别器结果进行了评估,本文所述方法成功将面部检测数降低到原始面部检测数的 0.5%。同样是用 300-W 数据集,我们还在不同的实验中证明了我们的攻击对基于 JPEG 压缩图的防御的鲁棒性,在 75% 的压缩等级的情况下,我们的攻击算法的有效性从 0.5%(可检测的面部比例)降低到 5.0%。


随着面部识别系统越发成熟,个人隐私问题也引发了越来越多的担忧。多伦多大学的研究人员利用对抗式训练的深度学习技术开发了一种新的算法,这种算法可以动态地扰乱面部识别系统,有助于保护用户隐私。研究者表示,他们的系统可以将可检测的面部比例从原先的近百分之百降低到 0.5%。


每当用户将照片或视频上传到社交媒体平台时,这些平台的面部识别系统都会对用户有一定的了解。这些算法会提取包括用户的身份、所在地以及认识的人在内的数据,而且还在不断提升。


随着对社交网络隐私和数据安全的担忧不断增加,Parham Arabia 教授和研究生 Avishek Bose 带领多伦多大学工程部的研究人员创建了一种可以动态扰乱面部识别系统的算法。


Aarabi 认为,「当面部识别系统做得越来越好时,个人隐私就成为了一个真正的问题。这种反面部识别的方法可以有力地保护个人隐私。」


他们的算法利用了所谓对抗式训练的深度学习技术,这种方法使两种人工智能算法相互对抗。Aarabi 和 Bose 设计的方法中有两个神经网络:第一个用来进行面部识别,第二个用来扰乱第一个做出的面部识别任务。这两个网络不断对抗,也不断地相互学习,从而开始了一场持续的 AI 竞赛。


这场竞赛的结果是建立了一个与 Instagram 有些相似的过滤器,这种过滤器可以应用在照片上从而达到保护隐私的目的。该算法改变了图像者表示,他们的系统可以将可检测的面部比例从原先的近百分之百降低到 0.5%。


该项目的主要作者 Bose 说:「这个项目的重点在于训练两个相互对抗的神经网络——一个用来创建越来越强大的面部识别系统,另一个用来创建更强大的、用来禁用面部检测系统的工具。」该团队的研究将于今年夏天在 2018 年 IEEE 国际多媒体信号处理研讨会(International Workshop on Multimedia Signal Processing)上发布。


多伦多大学工程部的研究人员设计了一个用于扰乱面部识别算法的「隐私过滤器」。该系统依赖于两个基于 AI 创建的算法:一个用于连续进行面部识别,另一个用于对第一个进行扰乱


除了禁用面部识别外,这项新技术还可以扰乱基于图像的搜索、特征识别、情感和种族评估以及其他自动提取面部属性的功能。接下来,该团队希望隐私过滤器可以以 app 或网页的形式为大众所用。


Aarabi 说:「十年前,这些算法还需要人为定义,但是现在神经网络已经可以自行学习了——除了训练数据,无需提供其他东西。最终,它们可以做出一些真正了不起的东西。在这个领域中这是一段非常有趣的时光,而且这个领域还有很大的潜力有待发掘。」




*推荐文章*

Facebook面部识别新突破:可识别未标记照片中用户

【换脸AI升级版】面部表情、身体动作、视线方向都能实时迁移


PS.极市平台诚招计算机视觉算法工程师啦~更多工作职责和工作要求请关注“极市平台”公众号(id:extrememart),点击菜单加入极市“诚招”栏,极市期待与您一起创造计算机视觉生态~~


登录查看更多
1

相关内容

【干货书】现代数据平台架构,636页pdf
专知会员服务
253+阅读 · 2020年6月15日
最新《Deepfakes:创造与检测》2020综述论文,36页pdf
专知会员服务
62+阅读 · 2020年5月15日
【天津大学】风格线条画生成技术综述
专知会员服务
31+阅读 · 2020年4月26日
【中国人民大学】机器学习的隐私保护研究综述
专知会员服务
131+阅读 · 2020年3月25日
美参议员提出商业面部识别隐私法案
蚂蚁金服评论
12+阅读 · 2019年4月25日
AI换脸朱茵变杨幂,技术背后细思极恐
大数据技术
7+阅读 · 2019年3月1日
差分隐私保护:从入门到脱坑
FreeBuf
17+阅读 · 2018年9月10日
揭秘|多伦多大学反人脸识别,身份欺骗成功率达99.5%
机器人大讲堂
6+阅读 · 2018年6月9日
PornHub 用计算机视觉识别 A 片中的演员和内容
TechCrunch中国
4+阅读 · 2017年10月13日
Arxiv
8+阅读 · 2018年11月21日
Arxiv
4+阅读 · 2018年9月25日
Arxiv
7+阅读 · 2018年6月8日
Arxiv
11+阅读 · 2018年5月13日
Arxiv
12+阅读 · 2018年1月12日
VIP会员
相关资讯
美参议员提出商业面部识别隐私法案
蚂蚁金服评论
12+阅读 · 2019年4月25日
AI换脸朱茵变杨幂,技术背后细思极恐
大数据技术
7+阅读 · 2019年3月1日
差分隐私保护:从入门到脱坑
FreeBuf
17+阅读 · 2018年9月10日
揭秘|多伦多大学反人脸识别,身份欺骗成功率达99.5%
机器人大讲堂
6+阅读 · 2018年6月9日
PornHub 用计算机视觉识别 A 片中的演员和内容
TechCrunch中国
4+阅读 · 2017年10月13日
相关论文
Arxiv
8+阅读 · 2018年11月21日
Arxiv
4+阅读 · 2018年9月25日
Arxiv
7+阅读 · 2018年6月8日
Arxiv
11+阅读 · 2018年5月13日
Arxiv
12+阅读 · 2018年1月12日
Top
微信扫码咨询专知VIP会员