生成对抗网络(GANs)是近年来受到广泛关注的一类新型的深度生成模型。GANs通过图像、音频和数据隐式地学习复杂的高维分布。然而,在GANs的训练中存在着主要的挑战。由于网络结构设计不当,使用目标函数和选择优化算法,导致模式崩溃,不收敛和不稳定。最近,为了解决这些挑战,一些更好地设计和优化GANs的解决方案已经被研究,基于重新设计的网络结构、新的目标函数和替代优化算法的技术。据我们所知,目前还没有一项综述特别侧重于这些解决办法的广泛和系统的发展。在这项研究中,我们进行了一个全面的综述,在GANs的设计和优化解决方案提出,以处理GANs的挑战。我们首先确定每个设计和优化技术中的关键研究问题,然后根据关键研究问题提出新的分类结构解决方案。根据分类,我们将详细讨论每个解决方案中提出的不同GANs变体及其关系。最后,在已有研究成果的基础上,提出了这一快速发展领域的研究方向。

https://arxiv.org/abs/2005.00065

概述

深度生成模型(DGMs),如受限玻尔兹曼机(RBMs)、深度信念网络(DBNs)、深度玻尔兹曼机(DBMs)、去噪自编码器(DAE)和生成随机网络(GSN),最近因捕获音频、图像或视频等丰富的底层分布和合成新样本而引起了广泛关注。这些深度生成模型采用基于马尔科夫链蒙特卡罗(MCMC)的[1][2]算法进行建模。基于MCMC的方法计算训练过程中梯度消失的对数似然梯度。这是由马尔科夫链产生的样本生成慢的主要原因,因为它不能足够快地在模式间混合。另一个生成模型,变分自动编码器(VAE),使用带有统计推理的深度学习来表示潜在空间[3]中的一个数据点,并在难以处理的概率计算的近似过程中体验复杂性。此外,这些生成模型是通过最大化训练数据可能性来训练的,其中基于概率的方法在许多数据集(如图像、视频)中经历了维数的诅咒。此外,在高维空间中,从马尔可夫链进行的采样是模糊的,计算速度慢且不准确。

为了解决上述问题,Goodfellow等人提出了生成对抗网(GANs),这是生成模型的另一种训练方法。GANs是一种新颖的深度生成模型,它利用反向传播来进行训练,以规避与MCMC训练相关的问题。GANs训练是生成模型和判别模型之间的极小极大零和博弈。GANs最近在生成逼真图像方面得到了广泛的关注,因为它避免了与最大似然学习[5]相关的困难。图1显示了GANs能力从2014年到2018年的一个进展示例。

GANs是一种结构化的概率模型,它由两个对立的模型组成:生成模型(Generator (G))用于捕获数据分布; 判别模型(Discriminator (D))用于估计生成数据的概率,以确定生成的数据是来自真实的数据分布,还是来自G的分布。D和G使用基于梯度的优化技术(同时梯度下降)玩一个两人极小极大对策,直到纳什均衡。G可以从真实分布中生成采样后的图像,而D无法区分这两组图像。为了更新G和D,由D通过计算两个分布之间的差异而产生的损失来接收梯度信号。我们可以说,GANs设计和优化的三个主要组成部分如下:(i) 网络结构,(ii) 目标(损失)函数,(iii)优化算法。

对多模态数据建模的任务,一个特定的输入可以与几个不同的正确和可接受的答案相关联。图2显示了具有多个自然图像流形(红色)的插图,结果由使用均方误差(MSE)的基本机器学习模型实现,该模型在像素空间(即,导致图像模糊)和GANs所获得的结果,从而驱动重构向自然图像流形方向发展。由于GANs的这一优势,它在许多领域得到了广泛的关注和应用。

GANs在一些实际任务中表现良好,例如图像生成[8][9]、视频生成[11]、域自适应[12]和图像超分辨率[10]等。传统的GANs虽然在很多方面都取得了成功,但是由于D和G训练的不平衡,使得GANs在训练中非常不稳定。D利用迅速饱和的逻辑损失。另外,如果D可以很容易的区分出真假图像,那么D的梯度就会消失,当D不能提供梯度时,G就会停止更新。近年来,对于模式崩溃问题的处理有了许多改进,因为G产生的样本基于少数模式,而不是整个数据空间。另一方面,引入了几个目标(损失)函数来最小化与传统GANs公式的差异。最后,提出了几种稳定训练的方法。

近年来,GANs在自然图像的制作方面取得了突出的成绩。然而,在GANs的训练中存在着主要的挑战。由于网络结构设计不当,使用目标函数和选择优化算法,导致模式崩溃,不收敛和不稳定。最近,为了解决这些挑战,一些更好地设计和优化GANs的解决方案已经被研究,基于重新设计的网络结构、新的目标函数和替代优化算法的技术。为了研究以连续一致的方式处理GANs挑战的GANs设计和优化解决方案,本综述提出了不同GANs解决方案的新分类。我们定义了分类法和子类寻址来构造当前最有前途的GANs研究领域的工作。通过将提出的GANs设计和优化方案分类,我们对其进行了系统的分析和讨论。我们还概述了可供研究人员进一步研究的主要未决问题。

本文贡献:

  • GAN新分类法。在本研究中,我们确定了每个设计和优化技术中的关键研究问题,并提出了一种新的分类法,根据关键研究问题来构造解决方案。我们提出的分类将有助于研究人员增强对当前处理GANs挑战的发展和未来研究方向的理解。

  • GAN全面的调研。根据分类法,我们提供了对各种解决方案的全面审查,以解决GANs面临的主要挑战。对于每一种类型的解决方案,我们都提供了GANs变体及其关系的详细描述和系统分析。但是,由于广泛的GANs应用,不同的GANs变体以不同的方式被制定、训练和评估,并且这些GANs之间的直接比较是复杂的。为此,我们进行了必要的比较,总结了相应的方法。他们提出了解决GANs挑战的新方案。这个调查可以作为了解、使用和开发各种实际应用程序的不同GANs方法的指南。

成为VIP会员查看完整内容
194

相关内容

【清华大学】低资源语言:回顾综述和未来的挑战,14页pdf
最新《深度多模态数据分析》综述论文,26页pdf
专知会员服务
294+阅读 · 2020年6月16日
专知会员服务
107+阅读 · 2020年5月21日
最新《智能交通系统的深度强化学习》综述论文,22页pdf
GANs最新综述论文: 生成式对抗网络及其变种如何有用
专知会员服务
70+阅读 · 2019年10月19日
【综述】生成式对抗网络GAN最新进展综述
专知
57+阅读 · 2019年6月5日
已删除
将门创投
5+阅读 · 2019年4月15日
万字综述之生成对抗网络(GAN)
PaperWeekly
43+阅读 · 2019年3月19日
生成对抗网络的最新研究进展
AI科技评论
5+阅读 · 2019年2月6日
生成对抗网络的研究进展与趋势
中国计算机学会
35+阅读 · 2018年11月14日
[论文笔记] GAN开山之作及最新综述
专知
12+阅读 · 2017年12月19日
【简介】生成式对抗网络简介
GAN生成式对抗网络
8+阅读 · 2017年9月16日
附资料包|GAN发展历程综述:送你最易入手的几个架构
七月在线实验室
6+阅读 · 2017年9月5日
Image Segmentation Using Deep Learning: A Survey
Arxiv
43+阅读 · 2020年1月15日
Arxiv
3+阅读 · 2019年10月31日
Generative Adversarial Networks: A Survey and Taxonomy
Arxiv
4+阅读 · 2019年4月17日
A Probe into Understanding GAN and VAE models
Arxiv
9+阅读 · 2018年12月13日
Deep Learning for Generic Object Detection: A Survey
Arxiv
13+阅读 · 2018年9月6日
Arxiv
12+阅读 · 2018年1月12日
Arxiv
4+阅读 · 2017年4月12日
VIP会员
相关资讯
【综述】生成式对抗网络GAN最新进展综述
专知
57+阅读 · 2019年6月5日
已删除
将门创投
5+阅读 · 2019年4月15日
万字综述之生成对抗网络(GAN)
PaperWeekly
43+阅读 · 2019年3月19日
生成对抗网络的最新研究进展
AI科技评论
5+阅读 · 2019年2月6日
生成对抗网络的研究进展与趋势
中国计算机学会
35+阅读 · 2018年11月14日
[论文笔记] GAN开山之作及最新综述
专知
12+阅读 · 2017年12月19日
【简介】生成式对抗网络简介
GAN生成式对抗网络
8+阅读 · 2017年9月16日
附资料包|GAN发展历程综述:送你最易入手的几个架构
七月在线实验室
6+阅读 · 2017年9月5日
相关论文
Image Segmentation Using Deep Learning: A Survey
Arxiv
43+阅读 · 2020年1月15日
Arxiv
3+阅读 · 2019年10月31日
Generative Adversarial Networks: A Survey and Taxonomy
Arxiv
4+阅读 · 2019年4月17日
A Probe into Understanding GAN and VAE models
Arxiv
9+阅读 · 2018年12月13日
Deep Learning for Generic Object Detection: A Survey
Arxiv
13+阅读 · 2018年9月6日
Arxiv
12+阅读 · 2018年1月12日
Arxiv
4+阅读 · 2017年4月12日
微信扫码咨询专知VIP会员