又一轮AI破解来袭:这一次是机器学习“黑匣子”

2017 年 12 月 19 日 E安全 E安全

更多全球网络安全资讯尽在E安全官网www.easyaq.com


E安全12月19日讯 德国三位研究人员发布了一款工具Foolbox,能够帮助用户在解析“黑匣子”时更轻松地构建起攻击模型。并且在名人面部识别与高知名度Logo识别方面成功骗过美国热门的图片识别工具。Foolbox目前正在接受审查,并计划于2018年4月底召开的学习报告国际大会上进行展示。

美国著名演员、导演乔治-克鲁尼与达斯汀-霍夫曼之间到底有何区别?
答案是:仅仅几个像素之差。

Foolbox工具特点

Foolbox是面向“黑匣子”的入侵方案

与“从内部”针对AI的攻击模型不同,面向“黑匣子(black box)”的入侵手段将可用于攻击自动驾驶车辆、安全(例如面部识别)或者语音识别(Alexa或Cortana)等封闭系统。

来自德国图宾根大学的Wieland Brendel、Jonas Rauber与Matthias Bethge在arXiv上解释称,Foolbox是一种“基于决策”的攻击方法,其利用边界攻击“从大攻击干扰性攻击入手,而后减少干扰并继续保持攻击能力”。

Foolbox对Clarifai的黑匣子AI进行攻击测试

其基本原理在于自大规模干扰起步,而后逐渐减少干扰范围,这一点不同于以往几乎所有对抗性攻击逻辑。除了极为简单之外,其组织起的边界攻击也非常灵活。例如,“基于转移的攻击”必须利用与攻击模型相同的训练数据进行测试,并需要“繁琐的替代模型”。

研究人员们在文章中指出,基于梯度的攻击同样需要具备与目标模型相关的详细知识,而基于评分的攻击则需要访问目标模型的置信度分数。

论文指出,这一边界攻击则仅需要查看目标机器学习模型给出的最终决策——例如其作为输入内容的类标签,或者语音识别模型当中的已转录句子。

Foolbox针对Clarifai黑匣子进行的logo类攻击测试

纽约初创公司Clarifai提供API类型的工具,利用深度学习技术来理解视频内容的服务,能够快速分析视频脚本,识别1万种不同的物体或场景。研究人员们利用Clarifai API对Foolbox攻击能力进行了测试,并在名人面部识别与高知名度Logo识别方面成功将其骗过。

机器学习技术

深度学习是受启发于脑神经元对输入信息进行响应从而学习的过程。许多层的模拟神经元和突触都被标记上了数据,这些神经元和突触的行为在学习的工程中不断被调整,直到它们学会如何进行识别。深度学习和其他机器学习技术改进了语音识别和图像分类技术。

这些机器学习技术逐渐被用于更多的领域中,这些一旦发生错误就会造成严重后果。例如军方现在正在开发很多自助系统,这些系统将很大程度上依赖于机器学习技术,比如自动驾驶汽车、无人机。

人工智能控制的自主汽车,车辆传感器的信息被直接送入深度学习神经网络;另一端,行驶所需的所有指令直接从人工智能这个“黑匣子”中提取。

什么是“黑匣子”? 

数据左右着设计决策,当采集的数据越来越多,无论是传统工具还是人都无法处理,于是采用的工具和用这些工具制造出来的产品最后都变成了“黑匣子”。这些黑匣子虽然不方便被人类检视,但是可靠性在很多领域已经优于老式设计和人类自己。

深度学习AI系统经常在黑匣子里做决策,因为机器可以在短时间内执行数百万次测试,提出一个解决方案,并继续执行数百万次测试,以提出更好的解决方案,因此人们无法轻松理解神经网络选择某种解决方案的原因。

注:本文由E安全编译报道,转载请注明原文地址

https://www.easyaq.com/news/558216770.shtml

推荐阅读:

点击阅读原文” 查看更多精彩内容

登录查看更多
0

相关内容

Clarifai,一家位于纽约的初创公司,为开发者提供给照片标记元数据的能力,以便公司得知照片中的对象类型。
专知会员服务
54+阅读 · 2020年7月4日
AI创新者:破解项目绩效的密码
专知会员服务
33+阅读 · 2020年6月21日
【实用书】Python机器学习Scikit-Learn应用指南,247页pdf
专知会员服务
266+阅读 · 2020年6月10日
【新书册】贝叶斯神经网络,41页pdf
专知会员服务
177+阅读 · 2020年6月3日
【哈佛大学】机器学习的黑盒解释性,52页ppt
专知会员服务
168+阅读 · 2020年5月27日
【中科院信工所】视听觉深度伪造检测技术研究综述
专知会员服务
40+阅读 · 2020年4月15日
KGCN:使用TensorFlow进行知识图谱的机器学习
专知会员服务
81+阅读 · 2020年1月13日
AWVS12 V12.0.190530102 windows正式版完美破解版
黑白之道
29+阅读 · 2019年8月24日
Deep-CEE:AI深度学习工具,帮助天文学家探索深空
深度学习探索
5+阅读 · 2019年7月21日
干货 | 可解释的机器学习
AI科技评论
20+阅读 · 2019年7月3日
【人工智能】深度学习的应用和价值、深度学习综述
当机器学习遇上计算机视觉
深度学习
6+阅读 · 2018年5月14日
为什么 Python 更适合做 AI/机器学习?
计算机与网络安全
10+阅读 · 2018年3月18日
谷歌的AI将乌龟认成步枪,这为何是个大问题
硅谷第一线
3+阅读 · 2017年11月22日
Reasoning on Knowledge Graphs with Debate Dynamics
Arxiv
14+阅读 · 2020年1月2日
Arxiv
6+阅读 · 2018年2月6日
Arxiv
11+阅读 · 2018年1月15日
Arxiv
4+阅读 · 2017年11月14日
VIP会员
相关VIP内容
专知会员服务
54+阅读 · 2020年7月4日
AI创新者:破解项目绩效的密码
专知会员服务
33+阅读 · 2020年6月21日
【实用书】Python机器学习Scikit-Learn应用指南,247页pdf
专知会员服务
266+阅读 · 2020年6月10日
【新书册】贝叶斯神经网络,41页pdf
专知会员服务
177+阅读 · 2020年6月3日
【哈佛大学】机器学习的黑盒解释性,52页ppt
专知会员服务
168+阅读 · 2020年5月27日
【中科院信工所】视听觉深度伪造检测技术研究综述
专知会员服务
40+阅读 · 2020年4月15日
KGCN:使用TensorFlow进行知识图谱的机器学习
专知会员服务
81+阅读 · 2020年1月13日
相关资讯
AWVS12 V12.0.190530102 windows正式版完美破解版
黑白之道
29+阅读 · 2019年8月24日
Deep-CEE:AI深度学习工具,帮助天文学家探索深空
深度学习探索
5+阅读 · 2019年7月21日
干货 | 可解释的机器学习
AI科技评论
20+阅读 · 2019年7月3日
【人工智能】深度学习的应用和价值、深度学习综述
当机器学习遇上计算机视觉
深度学习
6+阅读 · 2018年5月14日
为什么 Python 更适合做 AI/机器学习?
计算机与网络安全
10+阅读 · 2018年3月18日
谷歌的AI将乌龟认成步枪,这为何是个大问题
硅谷第一线
3+阅读 · 2017年11月22日
Top
微信扫码咨询专知VIP会员