为AI从业者/研究生/研究员专门定制的全网唯一高端AI训练营

2020 年 6 月 11 日 AINLP

NLP领域的现状以及AI工程师面临的严峻挑战


在过去几年时间里,NLP领域取得了飞速的发展,这也推动了NLP在产业中的持续落地,以及行业对相关人才的需求。 虽然,NLP的崛起滞后CV多年,但目前的势头还是势不可挡。 


但这里我们要面对的现实是,行业上90%以上的NLP工程师是“不合格的”。在过去几个月时间里,我们其实也面试过数百名已经在从事NLP的工程师,但明显发现绝大部分对技术深度和宽度的理解是比较薄弱的,大多还是只停留在调用现有工具比如BERT、XLNet等阶段。 


我们一直坚信AI人才的最大壁垒是创造力,能够持续为变化的业务带来更多的价值。但创造的前提一定是对一个领域的深度理解和广度认知,以及不断对一个事物的追问比如不断问自己为什么。


为什么在这个问题上使用Adam,而不是GD或者Adagrad?  对于特定的业务场景,我应该如何把领域知识考虑进去, 用先验,还是用限制条件? 对于拼车场景,设计了一套优化目标,但好像是离散优化问题,应该如何解决? 对于二分类,我应该选择交叉熵还是Hinge Loss?BERT模型太大了,而且效果发现不那么好比如next sentence prediction, 能不能改一改? 为什么CRF要不HMM在不少NLP问题上效果更好? 文本生成效果不太好,如何改造Beam Search让效果更好呢?训练主题模型效率太慢了,如果改造吉布斯采样在分布式环境下运行呢? 数据样本里的标签中有一些依赖关系,能不能把这些信息也加入到目标函数里呢?


另外,有必要保持对前沿技术的敏感性,但事实上,很多人还是由于各种原因很难做到这一点。基于上述的目的,贪心学院一直坚持跑在技术的最前线,帮助大家不断地成长。



为什么选择贪心学院的高端NLP?


首先,全网不可能找得到另外一门系统性的训练营具备如此的深度和广度,这里包括国外的课程,所以从内容的角度来讲是非常稀缺的内容。


其次,即便网络上的资源非常多,学习是需要成本的,而且越有深度的内容越难找到好的学习资源。如果一门课程帮助你清晰地梳理知识体系,而且把有深度的知识点脉络讲清楚,这就是节省最大的成本。


另外,作为一家专注在AI领域的教育科技公司,教研团队的实力在同行业可以算是非常顶尖的,这里不乏顶会的最佳论文作者、ALBERT的作者等。


最后,我们这一期的NLP高阶训练营(第八期)在原有的基础上做了大量的升级,融合了更多前沿的内容,而且在部分内容上加深了难度。



那谁适合学习NLP高端课程呢?


  • 已经在从事AI工作,但想持续在技术深度和广度上提升自己,塑造自己的壁垒

  • 目前在学校从事相关的研究,但想深入下去,或者为发表顶会文章打下基础

  • 对AI有一定的基础,而且很好的工程能力、想之后从事NLP相关的工作

  • 之后想申请国内外AI博士/硕士



01课程大纲


第一部分 机器学习与优化理论基础


学习目标:掌握必要的凸优化理论,使得在建模过程中可以灵活修改目标函数,从而满足业务中的个性化建模需求。

另外,在本阶段也帮助学员回顾核心的机器学习算法。

 

凸优化基础

  1. 判定凸集,以及凸函数

  2. 线性规划与二次规划

  3. 拉格朗日与对偶函数

  4. Strong Duality与KKT条件

  5. Non-convex优化问题

  6. NP-Hard问题与松弛化处理

  7. Discrete Optimization

  8. GD, SGD, Adam, Adagrad

  9. L-BFGS, ADMM

 

机器学习基础

  1. 生成模型与判别模型

  2. 最大似然与最大后验估计

  3. 模型的过拟合

  4. 各类不同的正则(L1, L2, L0)

  5. 各类启发式算法(遗传算法、贝叶斯优化等)

  6. 随机森林与XGBoost

  7. SVM与Dual SVM

  8. Kernel Trick与设计核函数

 

本阶段所涉及到的案例/作业

  1. 利用WMD计算文本之间的相似度

  2. 利用Sparse QP设计资产组合策略

  3. 利用随机规划(SP)来解决库存优化

  4. 利用线性规划解决运输问题

  5. 利用松弛化解决整数问题

 

 

第二部分  语言模型与序列标注

 

学习目标:掌握语言模型与条件随机场(CRF),所涉及到的内容包括无向图模型、维特比算法、Partition Function, Label Bias,EM等所有核心细节。

 

文本处理技术与语言模型

  1. 最大匹配算法与Jieba技术剖析

  2. SkipGram与负采样

  3. CBOW, Glove, MF

  4. Noisy Channel Model

  5. N-Gram模型与各类平滑技术

  6. NNLM

 

序列模型与条件随机场

  1. EM算法与GMM

  2. 有向图与无向图

  3. 条件独立、D-separation

  4. HMM模型、Viterbi以及参数估计

  5. MEMM与Label Bias问题

  6. Log-Linear模型与逻辑回归

  7. Linear-CRF与参数估计

 

本阶段所涉及到的案例/作业

  1. 拼写纠错系统的搭建

  2. 智能问答系统的搭建

  3. Linear-CRF的从零实现

  4. 基于CRF, LSTM-CRF的NER识别

 

 

 第三部分  预训练模型

 

学习目标:掌握BERT, XLNet等最新的预训练技术,能够熟练应用在自身的业务中。由于这部分的内容迭代更新速度快,所以具体内容安排会有所变化。

 

递归神经网络与注意力机制

  1. 分布式表示的优点

  2. RNN与梯度问题

  3. LSTM, GRU与BI-LSTM

  4. Seq2Seq与注意力机制

  5. Beam Search

  6. BI-LSTM-CRF模型

 

ELMo与Transformer

  1. 上下文有关词向量的学习

  2. NLU中的层次表示

  3. Deep BI-LSTM与ELMo

  4. Bottleneck问题与长依赖问题

  5. Self-Attention,Multi-head Attention

  6. Transformer与Transformer-XL

 

BERT与ALBERT

  1. Autoencoder与DAE

  2. MLM语言模型

  3. BERT模型

  4. BERT-BiLSTM-CRF

  5. ALBERT模型

  6. GPT2模型

 

XLNet与其他预训练模型

  1. AR语言模型

  2. Permutation语言模型

  3. Two-Stream Attention

  4. XLNet模型

  5. Roberta

  6. Q-Bert,VI-Bert

  7. 其他模型(TBD)

 

本阶段所涉及到的案例/作业

  1. 基于Seq2Seq+注意力机制的机器翻译系统

  2. 基于Transformer的机器翻译系

  3. 基于BERT-BiLSTM-CRF的NER识别

  4. XLNet的从零实现

 

 

第四部分  信息抽取与图神经网络

 

学习目标:掌握信息抽取、知识图谱、知识推理相关的内容。在这个领域需要掌握的内容,在这一阶段基本都会涉及到。

 

信息抽取与知识图谱

  1. NE的抽取与识别

  2. 基于规则的关系抽取技术

  3. 基于无监督、半监督的关系抽取

  4. 实体统一、实体消歧、指代消解

  5. 知识图谱、实体与关系

  6. 知识图谱中的推理

 

知识浅入与图神经网络

  1. TransE,NTN,Node2Vec模型

  2. SDNE模型

  3. 带属性的网络嵌入

  4. Graph Neural Network

  5. CNN与Graph CNN

  6. Dynamic Graph的处理

  7. BERT与KG的结合

 

 本阶段所涉及到的案例/作业

  1. 基于非结构化数据搭建知识图谱

  2. 基于知识图谱的大数据风控

  3. 基于医疗知识图谱的诊断

  4. 基于GNN的Combinatorial优化

  5. 基于信息抽取与DL的NL2SQL

 

 

第五部分  对话系统与文本摘要

 

学习目标:掌握常用的、以及前沿的对话系统和文本摘要相关的技术。目前相关技术的应用越来越普遍,本阶段内容基本覆盖所有必要的内容。

 

对话系统

  1. 智能问答与对话系统

  2. 基于检索的对话系统

  3. 基于生成式的对话管理

  4. 意图识别与有限状态机

  5. 基于任务式的对话系统

  6. 基于增强学习的对话系统

  7. 多轮对话的挑战

 

文本摘要

  1. Abstractive vs Extractive

  2. 基于模板的文本摘要生成

  3. 基于Seq2Seq的文本摘要生成

  4. ROUGE与Blue

  5. Hierarhical Attention

  6. Pointer-Generator Network

  7. Beam Search的改造

  8. Levenshtein Transformer

  9. MASS

 

本阶段所涉及到的案例/作业

  1. 基于任务导向的订票管理

  2. 基于Pointer-Generation Network的文本生成

  3. 基于增强学习的对话系统剖析

 

 

第六部分  模型压缩与其他前沿主题

 

学习目标:掌握前沿的模型压缩技术,贝叶斯以及深度学习可视化等技术。

 

模型压缩

  1. 嵌入式设备中的模型压缩

  2. 基于Sparsity的模型压缩

  3. 基于矩阵分解的模型压缩

  4. 基于蒸馏方法的模型压缩

  5. BERT、Transformer的压缩

 

贝叶斯模型

  1. MLE、MAP、Bayesian模型区别

  2. Dropout与Bayesian Approximation

  3. PGM与主题模型

  4. 吉布斯采样、变分法

  5. SGDL与SVI

  6. 分布式吉布斯采样

 

可视化与低资源学习

  1. 深度学习中的可视化技术

  2. RNN、LSTM的可视化

  3. Layer-wise Relevance Propagation

  4. Cross-Domain语言学习

  5. Transfer Learning

  6. One-shot Learning

 

本阶段所涉及到的案例/作业

  1. 利用Laywer-wise RP可视化端到端的机器翻译系统

  2. 基于吉布斯采样的N-Gram LDA模型实现

  3. 基于Bayesian-LSTM的命名实体识别



为AI从业者/研究生/研究员专门定制
全网唯一《NLP自然语言处理高阶训练营》

对课程有意向的同学

添加课程顾问小姐姐微信

报名、课程咨询

👇👇👇


02部分项目作业


课程设计 紧密围绕学术界最新进展以及工业界的需求, 涵盖了所有核心知识点,并且结合了 大量实战项目, 培养学员的动手能力,解决问题能力。

问答系统


从零开始搭建一个完整的问答系统。 给定一个语料库(问题和答案对),对于用户的输入需要返回最适合的答案。 涉及到的模块:
1. 对于用户的输入需要做拼写纠错,这部分会用到语言模型
2. 之后对输入做文本的预处理,过滤等操作。
3. 把文本转换成向量形式,这里需要用到tf-idf, word2vec等相关的技术。
4. 针对于语料库,为了提升效率需要创建倒排表。
5. 基于相似度的计算来获得最优的答案。

情感分析系统


基于给定数据,来搭建一个完整的情感分析系统。 项目涉及到的模块:
1. 数据的预处理
2. 特征工程,这部分是本项目的核心。
3. 监督学习模型的选择与调参。 调参的过程需要尝试不同的优化策略。

知识图谱系统


利用非结构化数据来搭建知识图谱。 项目涉及到的模块:
1. 从非结构化数据中抽取实体,以及词典库的构建
2. 关系的抽取(指定的关系)
3. 实体统一以及实体消歧。
4. 知识图谱的构建以及查询

对话系统中的NLU


基于给定的对话数据来构建NLU识别部分,并结果用于聊天机器人中。  项目涉及到的模块:
1. 文本特征的提取
2. 搭建CRF模型来识别关键词
3. 搭建LSTM-CRF模型来识别关键词。

机器翻译系统


基于给定数据,来搭建一个完整的情感分析系统。 项目涉及到的模块:
1. 数据的预处理
2. 特征工程,这部分是本项目的核心。
3. 监督学习模型的选择与调参。 调参的过程需要尝试不同的优化策略。

任务导向型聊天机器人


搭建一个完整的聊天机器人,用来服务搜索餐厅。 项目涉及到的模块:
1. 文本预处理
2. 意图识别和关键信息抽取
3. 对于每一个意图设计对话管理状态机
4. 设计上下文处理的方法
5. 对话生成模块
6. 处理一些常见的boundary case。


03直播授课,现场推导演示


区别于劣质的PPT讲解,导师全程现场推导, 让你在学习中有清晰的思路,深刻的理解算法模型背后推导的每个细节。更重要的是可以清晰地看到各种模型之间的关系!帮助你打通六脉!

▲源自:CRF与Log-Linear模型讲解
▲源自:CRF与Log-Linear模型讲解
▲源自:Convex Optimization 讲解
▲源自:Convergence Analysis 讲解
不管你在学习过程中遇到多少阻碍,你都可以通过以下4种方式解决:
1、直接在线问导师;
2、记录到共享文档中,每日固定时间的直播答疑;
3、学习社群中全职助教,随时提问答疑
4、共同的问题在Review Session里面做讲解


注:每次答疑,班主任都会进行记录,以便学员实时查阅。



04每周课程安排


采用直播的授课方式,一周4-5次的直播教学, 包括2次的main lectures, 1-2次的discussion session (讲解某一个实战、必备基础、案例或者技术上的延伸), 1次的paper reading session (每周会assign一篇必备论文,并且直播解读)。教学模式上也参考了美国顶级院校的教学体系。以下为其中一周的课程安排,供参考。 




05你的必备挑战


1.编写一些技术类文章


通过在知乎上发表相关技术文章进行自我成果检验,同时也是一种思想碰撞的方式,导师会对发表的每一篇文章写一个详细的评语。万一不小心成为一个大V了呢?虽然写文章的过程万分痛苦,学习群里半夜哀嚎遍野,但看一看抓着头发写出来的文章结果还是非常喜人的!看着自己收获的点赞数,大家都默默地感谢起导师们的无情!


这种满满的成就感,让大家一篇接一篇写了下去!
个个都立刻变身成了知乎大牛~


2.Project项目 & 日常作业


除了文章,算法工程师的立命根本--项目代码, 导师更是不会放过的。每次在Gitlab上布置的作业,导师们都会带领助教团队会予以详细的批改和反馈。并逼着你不断的优化!



06 课程研发团队
贪心学院联合来至Google、亚马逊、微软等AI企业11位AI科学家 对课程内容进行不断的打磨细化,课程基础部分涵盖了该AI技术邻域从业者必备的所有核心知识点,同时在课程深度上加入了 最新的学术研究及工业界的最新进展相关的教学, 确保学员学到国内外企业中热门AI知识技能。
▲部分课程研发导师简介

这两天群里更是捷报连连。 我们前三期项目的已经有多名学员被一线AI企业录取,还有通过二面、三面等待着offer。 相信未来几周我们将会受到更多的好消息!
随便截了几个学员反馈。

  




我确定了我们的魔鬼训练营没有误人子弟,我们的课程真的帮助到大家实质的技能提升或帮助大家拿到offer。


这次我们迎来了第八期NLP的招生,千万不要觉得这是一个对标其他线上课程的普通的训练营。由于内容的专业性以及深度,在过去吸引了大量的全球顶级名府的学员, 这里不乏来自斯坦福、UCSD、USC、哥大、HKUST、爱丁堡等世界名府的学生; 在这里,你不仅可以享受到通往顶尖人才的快乐、也可以结识志同道合的AI从业者以及未来的科学家。 


07报名须知

1、本课程为收费教学。
2、 本期仅招收剩余 名额23人。
3、品质保障!正式 开课后7天内,无条件全额退款。
4、学习本课程需要具备一定的AI基础。


●●●

为AI从业者/研究生/研究员专门定制
全网唯一《NLP自然语言处理高阶训练营》

对课程有意向的同学

添加课程顾问小姐姐微信

报名、课程咨询

👇👇👇

登录查看更多
1

相关内容

条件随机域(场)(conditional random fields,简称 CRF,或CRFs),是一种判别式概率模型,是随机场的一种,常用于标注或分析序列资料,如自然语言文字或是生物序列。 如同马尔可夫随机场,条件随机场为具有无向的图模型,图中的顶点代表随机变量,顶点间的连线代表随机变量间的相依关系,在条件随机场中,随机变量 Y 的分布为条件机率,给定的观察值则为随机变量 X。原则上,条件随机场的图模型布局是可以任意给定的,一般常用的布局是链结式的架构,链结式架构不论在训练(training)、推论(inference)、或是解码(decoding)上,都存在效率较高的算法可供演算。
【CVPR2020-CMU】无数据模型选择,一种深度框架潜力
专知会员服务
22+阅读 · 2020年4月12日
【ACL2020-Allen AI】预训练语言模型中的无监督域聚类
专知会员服务
23+阅读 · 2020年4月7日
专知会员服务
124+阅读 · 2020年3月26日
Python数据分析:过去、现在和未来,52页ppt
专知会员服务
100+阅读 · 2020年3月9日
中科大-人工智能方向专业课程2020《脑与认知科学导论》
谷歌机器学习速成课程中文版pdf
专知会员服务
145+阅读 · 2019年12月4日
为什么所有人都报了这个虐人到哭的NLP训练营?
深度学习与NLP
26+阅读 · 2019年5月15日
寒冬裁员,这51家公司不仅招人,年薪竟还给到80万!
七月在线实验室
4+阅读 · 2019年1月28日
免费 | 从通识到核心—自然语言处理专题公开课
PaperWeekly
3+阅读 · 2018年12月25日
学人工智能,参加培训真的有用吗?
AINLP
6+阅读 · 2018年10月10日
AI产品经理从业指南
产品经理读书会
5+阅读 · 2018年8月11日
我们计划招收300名学员,免费攻读人工智能专业
大数据和云计算技术
3+阅读 · 2018年8月7日
最低月薪过万,市场缺口5万人,今天免费带你入门
互联网架构师
5+阅读 · 2018年6月4日
95后“过控”专业转行AI工程师打卡!
人工智能头条
5+阅读 · 2018年6月1日
搞人工智能必备“数学库”
机器学习算法与Python学习
5+阅读 · 2017年11月20日
Arxiv
3+阅读 · 2018年10月8日
VIP会员
相关资讯
为什么所有人都报了这个虐人到哭的NLP训练营?
深度学习与NLP
26+阅读 · 2019年5月15日
寒冬裁员,这51家公司不仅招人,年薪竟还给到80万!
七月在线实验室
4+阅读 · 2019年1月28日
免费 | 从通识到核心—自然语言处理专题公开课
PaperWeekly
3+阅读 · 2018年12月25日
学人工智能,参加培训真的有用吗?
AINLP
6+阅读 · 2018年10月10日
AI产品经理从业指南
产品经理读书会
5+阅读 · 2018年8月11日
我们计划招收300名学员,免费攻读人工智能专业
大数据和云计算技术
3+阅读 · 2018年8月7日
最低月薪过万,市场缺口5万人,今天免费带你入门
互联网架构师
5+阅读 · 2018年6月4日
95后“过控”专业转行AI工程师打卡!
人工智能头条
5+阅读 · 2018年6月1日
搞人工智能必备“数学库”
机器学习算法与Python学习
5+阅读 · 2017年11月20日
Top
微信扫码咨询专知VIP会员