在利用电弧法制备碳纳米管的过程中,人们意外发现了碳量子点,随着研究的深入,越来越多制备方法被报道出来,根据形成碳量子点的方式,可将合成方法归为两大类:自上而下法和自下而上法。自上而下法,一般指利用“切割”的手段使大分子的物质变成荧光性质的纳米碳。比较常用的自上而下的合成方法包括化学氧化法、水热法、电化学氧化法、微波法以及超声处理等。自下而上,即利用小分子前驱体通过组装的方法使其“长大”成为具有荧光效应的碳量子点。常用的合成方法有煅烧法、微波法、超声法和水热合成法。其中应用最多的属水热法,可通过调节反应物的物料比、反应温度以及反应时间调控制备的碳量子点的表面基团和尺寸大小。
作为年轻的零维碳纳米材料,碳量子点在能源存储方面有着十分突出的潜在优势,相关实验证明碳量子点材料作为超级电容器电极材料时,其比电容量与尺寸大小呈线性正相关。碳量子点不仅自身拥有较高的比电容量,当与不同维度碳纳米材料复合时,其比电容量比单纯的碳纳米管提高2倍。碳量子点和三维石墨烯的复合材料也表现出类似的效果,同时呈现出更高的倍率性和稳定性。
碳量子点还可以用作非金属催化剂,相关研究证明氮掺杂的碳量子点对氧气具有更好的电催化活性。不仅可以用于电催化反应,在光催化反应中也有高效的催化效率,相关研究证明碳量子点/氮化碳催化剂在太阳能水解制氢过程中,转化效率与同类催化剂持平,具有较高的催化稳定性,同时具有无污染、成本低和资源丰富等优点。碳量子点也具有优异的荧光特性、稳定性和低毒性,因而被广泛应用在生物成像领域。相关生物实验证明碳量子点在生物体内稳定存在且荧光现象强烈。
除碳量子点以外,碳纳米球是常见的零维碳纳米材料,其研究历史和成果都很显著,虽然碳纳米球都呈现球形形貌但其微观结构还是有着明显的不同。根据球体的具体结构可以分为空心碳纳米球和实心碳纳米球;根据生长结构可将其分为放射形生长和同层生长碳纳米球。
碳纳米球因具有稳定优异的导电性、导热性、吸附性的理化性能,已经被广泛应用在催化剂载体、能源存储、吸附与分离、高效液相色谱填料等领域。为了更好的探索碳纳米球的实际应用价值,科研工作者探索出了很多合成方法。主要包括水热合成法、化学气相沉积法和模板法等。
其中模板法包括硬模板法和软模板法两种。硬模板法一般用来制备多孔的空心碳纳米球,具体操作步骤:硬模板作空间的填充物,碳的前驱体沉积到模板上,经高温碳化,除去模板即可得到空心的碳纳米球。其中二氧化硅小球和聚合物乳液胶体是最为常用的模板,因为它们可以调控孔径大小、碳纳米球尺寸且制备方法简单易行。与之对应的软模板法则是以含有柔性结构的双亲性分子或其聚集体为模板。软模板与碳的前驱体之间存在着相互作用力,如范德华力、静电吸引力、氢键等,因此可以自发形成热力学稳定、结构有序的超分子结构。碳的前驱体就在这些超分子结构之间的缝隙处发生反应,因此可以通过调节模板的结构达到控制碳纳米球形貌和尺寸的目的。
水热合成法是最为广泛应用的制备碳纳米球的方法。其合成过程操作简单,实验条件温和,且制备的碳纳米球形貌均一、粒径分布均匀。该合成方法多以小分子的生物质为碳源,如蔗糖、果糖、葡萄糖淀粉等,以水或弱酸为反应溶剂。
化学气相沉积法是另一种成熟的制备碳纳米球的方法。该方法通常以易挥发的物质当作碳源,在惰性气体的保护下和金属催化剂的催化作用下,合成不易挥发的碳材料。通过控制反应过程中的裂解温度、气流量以及沉积时间等合成形貌均一、尺寸均匀的碳纳米球。
随着碳纳米球制备技术研宄的深入,其独特的理化性质逐渐被世人了解。在能源存储方面,碳材料都是最常用的电极材料。碳纳米球由于具有大的比表面积和自由调控的尺寸以及孔道结构,表现出优异的电池性能和比电容性能。另外,碳纳米球由于具有高的机械强度、优良的流体流动性和填充性,还适于用作液相或气相反应中的催化剂载体。此外,球形碳纳米材料具有大的比表面积,多孔结构等优点还被广泛应用于污水净化。