导读: 本文主要简要列举下Google、Tencent、Alibaba以及ByteDance等各大公司在SIGIR 2020上关于深度推荐系统与CTR预估相关的论文。
2. Parameter-Efficient Transfer from Sequential Behaviors for User Modeling and Recommendation Fajie Yuan: Tencent; Xiangnan He: University of Science and Technology of China; Alexandros Karatzoglou: Google; Liguang Zhang: Tencent
论文地址:https://arxiv.org/abs/2001.04253
3. Measuring Recommendation Explanation Quality: The Conflicting Goals of Explanations Krisztian Balog: Google; Filip Radlinski: Google
4. Choppy: Cut Transformers For Ranked List Truncation Dara Bahri: Google Research; Yi Tay: Google Research; Che Zheng: Google Research; Don Metzler: Google Research; Andrew Tomkins: Google Research
论文地址:https://arxiv.org/abs/2004.13012
5. Feature Transformation for Neural Ranking Models Honglei Zhuang: Google Research; Xuanhui Wang: Google Research; Michael Bendersky: Google Research; Marc Najork: Google Research
论文地址:https://research.google/pubs/pub49171/
6. Distributed Equivalent Substitution Training for Large-Scale Recommender Systems Haidong Rong: Tencent; Yangzihao Wang: Tencent; Feihu Zhou: Tencent; Junjie Zhai: Tencent; Haiyang Wu: Tencent; Rui Lan: Tencent; Fan Li: Tencent; Han Zhang: Tencent; Yuekui Yang: Tencent; Zhenyu Guo: Tencent; Di Wang: Tencent
论文地址:https://arxiv.org/abs/1909.04823
7. Group-Aware Long- and Short-Term Graph Representation Learning for Sequential Group Recommendation Wen Wang: East China Normal University; Wei Zhang: East China Normal University; Jun Rao: Search Product Center, WeChat Search Application Department, Tencent; Zhijie Qiu: Search Product Center, WeChat Search Application Department, Tencent; Bo Zhang: Search Product Center, WeChat Search Application Department, Tencent; Leyu Lin: Search Product Center, WeChat Search Application Department, Tencent; Hongyuan Zha: Georgia Institute of Technology
8. A General Network Compression Framework for Sequential Recommender Systems Yang Sun: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Fajie Yuan: Tencent; Min Yang: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Guoao Wei: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Zhou Zhao: Zhejiang University; Duo Liu: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
论文地址:https://arxiv.org/abs/2004.13139
9. TFNet: Multi-Semantic Feature Interaction for CTR Prediction Shu Wu: Institute of Automation, Chinese Academy of Sciences (CASIA); Feng Yu: Institute of Automation, Chinese Academy of Sciences (CASIA); Xueli Yu: Institute of Automation, Chinese Academy of Sciences (CASIA); Qiang Liu: RealAI and Tsinghua University; Liang Wang: Institute of Automation, Chinese Academy of Sciences (CASIA); Tieniu Tan: Institute of Automation, Chinese Academy of Sciences (CASIA); Jie Shao: Tencent; Fan Huang: Tencent
10. Entire Space Multi-Task Modeling via Post-Click Behavior Decomposition for Conversion Rate Prediction Hong Wen: Alibaba Group; Jing Zhang: The University of Sydney; Yuan Wang: Alibaba Group; Fuyu Lv: Alibaba Group; Wentian Bao: Alibaba Group; Quan Lin: Alibaba Group; Keping Yang: Alibaba Group
论文地址:https://arxiv.org/abs/1910.07099
11. Sequential Recommendation with Self-attentive Multi-adversarial Network Ruiyang Ren: Renmin University of China; Zhaoyang Liu: Alibaba Group; Yaliang Li: Alibaba Group; Wayne Xin Zhao: Renmin University of China; Hui Wang: Renmin University of China; Bolin Ding: Alibaba Group; Ji-Rong Wen: Renmin University of China
论文地址:https://arxiv.org/abs/2005.10602
12. Deep Interest with Hierarchical Attention Network for Click-Through Rate Prediction Weinan Xu: Lazada Group; Hengxu He: Alibaba Group; Minshi Tan: Lazada Group; Yunming Li: Lazada Group; Jun Lang: Lazada Group; Dongbai Guo: Lazada Group
论文地址:https://arxiv.org/abs/2005.12981
13. MRIF: Multi-resolution Interest Fusion for Recommendation Shihao Li: Alibaba Inc; Dekun Yang: Alibaba Inc; Bufeng Zhang: Alibaba Inc
14. ATBRG: Adaptive Target-Behavior Relational Graph Network for Effective Recommendation Yufei Feng: Alibaba Group; Binbin Hu: Ant Financial Services Group; Fuyu Lv: Alibaba Group; Qingwen Liu: Alibaba Group; Zhiqiang Zhang: Ant Financial Services Group; Wenwu Ou: Alibaba Group
论文地址:https://arxiv.org/abs/2005.12002
15. ESAM: Discriminative Domain Adaptation with Non-Displayed Items to Improve Long-Tail Performance Zhihong Chen: Zhejiang University; Rong Xiao: Alibaba Group; Chenliang Li: Wuhan University; Gangfeng Ye: Alibaba Group; Haochuan Sun: Alibaba Group; Hongbo Deng: Alibaba Group
论文地址:https://arxiv.org/abs/2005.10545
16. Towards Linking Camouflaged Descriptions to Implicit Products in E-commerce Longtao Huang: Alibaba Group; Bo Yuan: Alibaba Group; Rong Zhang: Alibaba Group; Quan Lu: Alibaba Group
17. Evolutionary Product Description Generation: A Dynamic Fine-Tuning Approach Leveraging User Click Behavior Yongzhen Wang: Indiana University Bloomington; Jian Wang: Alibaba Group; Heng Huang: Alibaba Group; Hongsong Li: Alibaba Group; Xiaozhong Liu: Indiana University Bloomington
18. GMCM: Graph-based Micro-behavior Conversion Model for Post-click Conversion Rate Estimation Wentian Bao: Alibaba Group; Hong Wen: Alibaba Group; Sha Li: University of Illinois Urbana-Champaign; Xiao-Yang Liu: Columbia University; Quan Lin: Alibaba Group; Keping Yang: Alibaba Group
19. FashionBERT: Text and Image Matching with Adaptive Loss for Cross-modal Retrieval Dehong Gao: Alibaba Group; Linbo Jin: Alibaba Group; Ben Chen: Alibaba Group; Minghui Qiu: Alibaba; Yi Wei: Alibaba Group; Yi Hu: Alibaba Group; Hao Wang: Alibaba Group
论文地址:https://arxiv.org/abs/2005.09801
20. AutoGroup: Automatic Feature Grouping for Modelling Explicit High-Order Feature Interactions in CTR Prediction Bin Liu: Bytedance; Niannan Xue: Huawei Noah's Ark Lab; Huifeng Guo: Huawei Noah's Ark Lab; Ruiming Tang: Huawei Noah's Ark Lab; Stefanos Zafeiriou: Imperial College London; Xiuqiang He: Huawei Noah's Ark Lab; Zhenguo Li: Huawei Noah's Ark Lab
21. Automated Embedding Size Search in Deep Recommender Systems Haochen Liu: Michigan State University; Xiangyu Zhao: Michigan State University; Chong Wang: Bytedance; Xiaobing Liu: Bytedance; Jiliang Tang: Michigan State University
22. A General Knowledge Distillation Framework for Counterfactual Recommendation via Uniform Data Dugang Liu: Shenzhen University; Pengxiang Cheng: Huawei Noah's ark lab; Zhenhua Dong: Huawei Noah's ark lab; Xiuqiang He: Huawei Noah's ark lab; Weike Pan: Shenzhen University; Zhong Ming: Shenzhen University
23. Neighbor Interaction Aware Graph Convolution Networks for Recommendation Jianing Sun: Huawei Technologies Canada; Yingxue Zhang: Huawei Technologies Canada; Wei Guo: Huawei Noah's Ark Lab; Huifeng Guo: Huawei Noah's Ark Lab; Ruiming Tang: Huawei Noah's Ark Lab; Xiuqiang He: Huawei Noah's Ark Lab; Chen Ma: McGill University; Mark Coates: McGill University
更多SIGIR 2020 accepted paper list请点击文末左下角原文链接查看。本文中涉及到的所有论文以及更多最前沿的推荐广告方面的论文分享请移步如下的GitHub项目进行学习交流、star以及fork,后续仓库会持续更新最新论文。
https://github.com/imsheridan/DeepRec
推荐阅读
超赞!百度词法分析工具 LAC 全面升级,2.0 版在线极速体验
征稿启示| 200元稿费+5000DBC(价值20个小时GPU算力)
文本自动摘要任务的“不完全”心得总结番外篇——submodular函数优化
斯坦福大学NLP组Python深度学习自然语言处理工具Stanza试用
太赞了!Springer面向公众开放电子书籍,附65本数学、编程、机器学习、深度学习、数据挖掘、数据科学等书籍链接及打包下载
数学之美中盛赞的 Michael Collins 教授,他的NLP课程要不要收藏?
关于AINLP
AINLP 是一个有趣有AI的自然语言处理社区,专注于 AI、NLP、机器学习、深度学习、推荐算法等相关技术的分享,主题包括文本摘要、智能问答、聊天机器人、机器翻译、自动生成、知识图谱、预训练模型、推荐系统、计算广告、招聘信息、求职经验分享等,欢迎关注!加技术交流群请添加AINLPer(id:ainlper),备注工作/研究方向+加群目的。
阅读至此了,点个在看吧👇