现如今推荐系统在我们的生活中无处不在,逛淘宝看到的“你可能还喜欢”、网易云的“推荐歌单”等功能都是通过推荐系统进行的推送。信息爆炸的当下,推荐系统在互联网行业得到了广泛的应用,同时也出现了大量岗位,推荐算法人才的稀缺程度水涨船高,薪资水平也十分可观。
截至2022年8月4日,推荐系统工程师月平均工资¥30K-50K,对比平均工资¥10.2K高252.8%,即使每个地区薪资情况各有不同,但推荐岗的薪资也至少高于当地平均工资50%。
添加客服微信,回复“推荐5”获取
⬇️⬇️
0基础入行推荐系统
国家级机器学习导师 | 企业项目实践
助教全天伴学、系统理论输入、还原大厂面试
👇
正式课程
第一章 推荐系统概述
推荐系统应用概述
推荐系统逻辑概述
推荐系统技术架构
经典推荐算法的应用
倒排索引与TF-IDF
基于用户/物品的协同过滤算法
协同过滤与TF-IDF的优化方向
基于隐语义/矩阵分解的推荐算法
基于图模型的推荐算法
基于逻辑斯特回归的推荐算法
poly2特征交叉推荐算法
GBDT/GBDT+LR推荐算法
FM推荐算法
FFM推荐算法
MLR(LS-PLM)推荐算法
经典推荐算法与深度推荐算法的关系
深度推荐算法的进化历程
AutoRec推荐算法
NeuralCF推荐算法
Wide&Deep推荐算法
DeepFM推荐算法
Deep&Cross推荐算法
DeepCrossing推荐算法
FNN推荐算法
PNN推荐算法
NFM推荐算法
AFM推荐算法
DIN推荐算法
DIEN推荐算法
基于多目标学习的推荐算法
基于强化学习的推荐算法
Embedding技术的应用
Word2Vec的CBOW算法及优化
Word2Vec的SkipGram算法及优化
Item2Vec与双塔模型
DeepWalk Embedding生成算法
Line Embedding生成算法
Node2Vec Embedding生成算法
EGES Embedding生成算法
特征工程应用
特征工程的流程常见思路
特征工程典型工程问题
模型与特征实时性
召回与排序的典型策略
算法优化目标的选择
推荐系统冷启动应用与典型问题
冷启动多层级策略
新用户的冷启动策略和算法
新物品的冷启动策略和算法
系统的冷启动策略和算法
贝叶斯参数估计
Thompson采样
UCB算法
Lin-UCB算法
推荐系统的数据流框架
推荐系统的分布式离线训练方法
Parameter Server解析
推荐模型的上线部署方法
tf-Servering的解析
推荐系统的典型离线与线上评估方法与指标计算
A/B实验框架解析
保证跟上学习进度 不掉队不延误
01两只脚全部迈入推荐系统领域,夯实理论知识,巩固算法基础
02达到企业对算法岗的要求,了解推荐系统真实业务场景
03形成作品集,增加简历含金量
04模拟真实面试场景为求职做充足的准备
添加客服微信,回复“推荐5”获取
⬇️⬇️