深度学习已经成为应对各种NLP任务的主导方法,尽管输入文本通常被表示为序列化的tokens,但图结构的形式往往可以对许多NLP问题进行更好的表达。因此,有必要针对NLP任务来开发新的图上的深度学习技术。在这项综述中,作者对用于NLP任务的GNNs进行了全面的概述,并提出了一个新的GNNs for NLP的分类体系,它沿着三个方面系统地组织了现有研究,包括:图的构建、图表示学习和基于图的编码器-解码器模型。论文还进一步介绍了大量正在应用GNNs驱动NLP的应用,并总结了相应的基准数据集、评估指标和开源代码。最后,论文讨论了在NLP中充分利用GNNs的挑战以及未来的研究方向。这是第一份针对自然语言处理任务的图神经网络的全面综述。