TensorFlow 日常更新:加入 AutoGraph,简化构图流程

2018 年 7 月 19 日 专知

【导读】谷歌发布了一个新的 TensorFlow 工具「AutoGraph」,旨在快速将Python 代码转化到TensorFlow体系里。目前测试来看,这一工具简化了构图流程,加强了 TensorFlow 调用Python 时的性能。


作者 | Alex Wiltschko, Dan Moldovan, Wolff Dobson

整理 | Huaiwen


在正常版的 TensorFlow中,代码构建流程是:先构建算法的计算图,然后feed数据, 然后执行计算图。当然因为当前 PyTorch等动态计算图的流行,TensorFlow 也发布了 Eager Execution,它可以帮助用户自动构建计算图。但一般的 TensorFlow 还是常使用静态计算图的方式,因为它的构建逻辑与部署都非常有优势。


然而,静态计算图比较难理解,它与日常那种从上至下一句一句执行的逻辑相违背。尤其是在一些涉及复杂模型场景中,例如使用 if 和 while 等 Python 语句,或使用 print() 与接受结构化输入等,Tensorflow 总会让人感到深深的无力。


总于,最新加入的 Feature:AutoGraph 可以自动搞定上述事情。


使用 autograph.convert() 装饰器来装饰函数,AutoGraph 将自动生成图可用的代码。


比如:

@autograph.convert()
def huber_loss(a):
  if tf.abs(a) <= delta:
    loss = a * a / 2
  else:
    loss = delta * (tf.abs(a) - delta / 2)
  return loss


在执行时变成如下代码:

 

def tf__huber_loss(a):
  with tf.name_scope('huber_loss'):

    def if_true():
      with tf.name_scope('if_true'):
        loss = a * a / 2
        return loss,

    def if_false():
      with tf.name_scope('if_false'):
        loss = delta * (tf.abs(a) - delta / 2)
        return loss,
    loss = ag__.utils.run_cond(tf.less_equal(tf.abs(a), delta), if_true,
        if_false)
    return loss

接下来,你可以调用你的代码,就像使用一般的 TensorFlow op 一样:

with tf.Graph().as_default():  
  x_tensor = tf.constant(9.0)

  # The converted function works like a regular op: tensors in, tensors out.
  huber_loss_tensor = huber_loss(x_tensor)

  with tf.Session(as sess:
    print('TensorFlow result: %2.2f\n' % sess.run(huber_loss_tensor))

如此看来,AutoGraph 看上去就是一种翻译机制,把 Python 代码,翻译成 TensorFlow 的规范。实际上,并不是,AutoGraph 要高端一些。它不只是宏命令的集合,它还可以使用源代码转换来覆写 Python 语言的任意部分,包括控制流、函数应用和分配,生成样板代码,重构惯用 Python,以使转换成图的过程变得简单。

那么,AutoGraph 可以为我们做什么呢?以下有一些示例代码,它们可以直接转换为图代码而不需要任何的改写。如果你想实际运行这些操作,谷歌在这个 GitHub 的 Colab 中提供了一个 notebook 可供使用。


GitHub:https://github.com/tensorflow/models/blob/master/samples/core/guide/autograph.ipynb

Colab:https://colab.research.google.com/github/tensorflow/models/blob/master/samples/core/guide/autograph.ipynb

以下我们使用循环和分支来测试「科拉兹猜想」。注意,考虑到多样性,我们将不使用 decorator,而使用 AutoGraph 的.to_graph() 函数将其转换为图。


def collatz(a):
    counter = 0
    while a != 1:
        if a % 2 == 0:
            a = a // 2
        else:
            a = 3 * a + 1
        counter = counter + 1
    return counter

graph_mode_collatz = autograph.to_graph(collatz)
# The code is human-readable, too
print(autograph.to_code(collatz))

collatz_tensor = graph_mode_collatz(tf.constant(n))

AutoGraph 可以支持任意的嵌套控制流,例如:

def f(n):
  if n >= 0:
    while n < 5:
      n += 1
      print(n)
  return n

AutoGraph 允许你在循环中添加元素到数组中。为了让其工作,我们使用一些 AutoGraph 辅助工具,set_element_type 和 stack。

def f(n):
  z = []
  # We ask you to tell us the element dtype of the list
  autograph.set_element_type(z, tf.int32)
  for i in range(n):
    z.append(i)
  # when you're done with the list, stack it
  # (this is just like np.stack)
  return autograph.stack(z)

AutoGraph还支持 break、continue,甚至 print 和 assert 等语句。当转换完成后,这个片段的 Python assert 使用合适的 tf.Assert 将其转换为 TensorFlow 计算图。

def f(x):
  assert x != 0, 'Do not pass zero!'
  return x * x

具备轻易地添加循环、控制流等到图上的能力意味着可以很容易将训练循环转移到图中。可以在这个 Colab 的 notebook 中找到一个示例,其中使用了一个 RNN 训练循环,并用一个 sess.run() 调用来执行它。当你需要传递一个完整的训练循环到加速器时,这很有用,比通过 CPU 控制器管理训练过程更好。

AutoGraph 打开了构建和训练模型的新思路。谷歌在未来将基于开发者社区建议尝试添加更多的功能到 AutoGraph 上。


原文链接:

https://medium.com/tensorflow/autograph-converts-python-into-tensorflow-graphs-b2a871f87ec7

-END-

专 · 知


人工智能领域主题知识资料查看与加入专知人工智能服务群

【专知AI服务计划】专知AI知识技术服务会员群加入人工智能领域26个主题知识资料全集获取欢迎微信扫一扫加入专知人工智能知识星球群,获取专业知识教程视频资料和与专家交流咨询


请PC登录www.zhuanzhi.ai或者点击阅读原文,注册登录专知,获取更多AI知识资料

请加专知小助手微信(扫一扫如下二维码添加),加入专知主题群(请备注主题类型:AI、NLP、CV、 KG等)交流~


关注专知公众号,获取人工智能的专业知识!

点击“阅读原文”,使用专知

登录查看更多
2

相关内容

【SIGIR2020】LightGCN: 简化和增强图卷积网络推荐
专知会员服务
72+阅读 · 2020年6月1日
一份循环神经网络RNNs简明教程,37页ppt
专知会员服务
172+阅读 · 2020年5月6日
TensorFlow Lite指南实战《TensorFlow Lite A primer》,附48页PPT
专知会员服务
69+阅读 · 2020年1月17日
【干货】谷歌Joshua Gordon 《TensorFlow 2.0讲解》,63页PPT
专知会员服务
27+阅读 · 2019年11月2日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
官方解读:TensorFlow 2.0 新的功能特性
云头条
3+阅读 · 2019年1月23日
TF Boys必看!一文搞懂TensorFlow 2.0新架构!
引力空间站
18+阅读 · 2019年1月16日
Tensorflow Eager Execution入门指南
专知
6+阅读 · 2018年4月16日
学习|使用autograd来自动求导
全球人工智能
4+阅读 · 2017年11月27日
tensorflow系列笔记:流程,概念和代码解析
北京思腾合力科技有限公司
30+阅读 · 2017年11月11日
终于!TensorFlow引入了动态图机制Eager Execution
深度学习世界
5+阅读 · 2017年11月1日
手把手教你由TensorFlow上手PyTorch(附代码)
数据派THU
5+阅读 · 2017年10月1日
教程 | 如何从TensorFlow转入PyTorch
机器之心
7+阅读 · 2017年9月30日
Arxiv
19+阅读 · 2018年10月25日
Arxiv
3+阅读 · 2018年4月9日
Arxiv
23+阅读 · 2017年3月9日
VIP会员
相关资讯
官方解读:TensorFlow 2.0 新的功能特性
云头条
3+阅读 · 2019年1月23日
TF Boys必看!一文搞懂TensorFlow 2.0新架构!
引力空间站
18+阅读 · 2019年1月16日
Tensorflow Eager Execution入门指南
专知
6+阅读 · 2018年4月16日
学习|使用autograd来自动求导
全球人工智能
4+阅读 · 2017年11月27日
tensorflow系列笔记:流程,概念和代码解析
北京思腾合力科技有限公司
30+阅读 · 2017年11月11日
终于!TensorFlow引入了动态图机制Eager Execution
深度学习世界
5+阅读 · 2017年11月1日
手把手教你由TensorFlow上手PyTorch(附代码)
数据派THU
5+阅读 · 2017年10月1日
教程 | 如何从TensorFlow转入PyTorch
机器之心
7+阅读 · 2017年9月30日
Top
微信扫码咨询专知VIP会员