这篇文章是基于论文“Meta-Graph: Few Shot Link Prediction via Meta Learning” by Joey Bose, Ankit Jain, Piero Molino, and William L. Hamilton. 许多真实世界的数据都是以图的结构呈现,因此,多年来基于图的机器学习研究一直是学术界研究的一个活跃领域。其中,一个流行基于图数据的机器学习的任务是链接预测,它涉及到预测图数据中节点之间缺失的关系/边。例如,在一个社交网络中,我们可能使用链接预测来支撑一个朋友推荐系统,或者在生物网络数据中,我们可能使用链接预测来推断药物、蛋白质和疾病之间可能的关系。然而,尽管链接预测很受欢迎,但是以前的工作通常只关注一个特定的问题设置:它通常假设链接预测是在一个大型图上执行的,并且这个图是相对完整的,即在训练过程中,至少有50%的真实边是可以观察到的。 在这项工作中,我们考虑了更有挑战性的小样本链接预测设置,其中的目标是对多个图执行链接预测,这些图只包含它们的真实、底层边的一小部分。这个任务的灵感来自于这样的应用程序:我们可以访问来自单个域的多个图,但是每个单独的图只包含真实的底层边的一小部分。例如,在生物环境中,高通量互作提供了从不同的组织、细胞类型和生物体估计数以千计的生物互作网络的可能性;然而,这些估计的关系可能是有噪音的和稀疏的,我们需要学习算法来利用这些多个图的信息来克服这种稀疏性。类似地,在电子商务和社交网络设置中,当我们必须快速地对稀疏估计的图进行预测时,比如最近将某个服务部署到新地区时,链接预测通常会产生很大的影响。换句话说,新的稀疏图的链接预测可以受益于从其他图(可能更密集的图)传输知识,假设存在可利用的共享结构。我们介绍了一个新的框架元图,用于小样本链接预测,和以及相应的一系列基准测试。我们采用了经典的基于梯度的元学习公式对图域进行小样本分类。具体地说,我们把图上的分布看作是学习全局参数集的任务上的分布,并将此策略应用于训练能够进行小概率链路预测的图神经网络(GNNs)。为了进一步引导快速适应新图,我们还引入了图签名函数,该函数学习如何将输入图的结构映射到GNN链路预测模型的有效初始化点。我们在三个链接预测基准上对我们的方法进行了实验验证。我们发现我们的MetaGraph方法不仅实现了快速适应,而且在许多实验设置中收敛到更好的整体解决方案,在非元学习基线上收敛的AUC平均提高了5.3%。
小样本链接预测设置
给定一个分布在图p(G)上的分布,从中我们可以对一个训练图Gi = (Vi, Ei, Xi)进行抽样,其中Vi是节点集合,Ei是边集合,Xi是一个实值节点属性矩阵。我们假设每个示例图Gi都是一个简单的图,这意味着它只包含一种类型的关系,没有自环。我们进一步假设,对于每个图Gi,我们在训练期间只能访问少量的训练边E_train (其中|E_train| << |E|)。最后,我们假设p(G)是在一组相关图上定义的,不管它们是来自一个公共域还是具体的应用设置。