Ian Goodfellow:生成对抗网络 GAN 的公式是怎样推导出来的

2018 年 5 月 16 日 新智元 新智元





  新智元编译  

来源:Ian Goodfellow

编辑:肖琴


【新智元导读】昨天,谷歌大脑研究科学家、生成对抗网络GAN的提出者Ian Goodfellow在Twitter推荐了他最喜欢的两个机器学习的Theory Hacks,利用这两个技巧,他在著名的GAN论文中推导了公式。


GAN论文地址:https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf


昨天,谷歌大脑研究科学家、《深度学习》的作者之一Ian Goodfellow在Twitter推荐了他最喜欢的两个机器学习“黑魔法”(Theory Hack)。Ian Goodfellow还是生成对抗网络GAN的提出者,利用这两个技巧,他在著名的GAN论文中推导了一个公式。



很多时候,我们想用代数/微积分来分析神经网络的最优行为。神经网络模型通常非常复杂,用代数方法来实现权重衰减或许可行,但想用代数方法来解决神经网络中大多数函数的参数优化问题就会太过复杂。


为了得到一个不那么复杂的模型,一个常见的直觉方法是使用线性模型。线性模型很好,因为它能很好的解决凸优化问题。但线性模型也有缺点:它过于简单,很多神经网络能做的事情线性模型不能做。这样,解决方法就简化了。


Theory Hack#1:将神经网络建模为一个任意函数(因此可以优化所有函数f的空间,而不是特定神经网络架构的参数theta)。与使用参数和特定的架构相比,这种方法非常简洁。


将神经网络视为一个函数,保留了线性模型的主要优点:多种凸函数问题。例如,分类器的交叉熵损失在函数空间中是凸的。


这个假设不是太准确,特别是与线性模型假设相比。但根据万能逼近定理(universal approximator theorem),神经网络可以较好地近似任意函数。


Theory Hack#2:如果你在同一空间优化所有函数时遇到困难,可以将函数想象成一个包含很多项(entries)的向量。评估函数f(x),其中x在R ^ n中,设想成在一个向量中查找f_x,其中x是一个整数索引。


有了Theory Hack#2,现在对函数进行优化就变成了一个常规的微积分问题。这种方法很直观,但不是100%准确。有关更多正式版本和关于何时可以使用的限制信息,请参阅《深度学习》书的19.4.2部分:http://www.deeplearningbook.org/contents/inference.html


利用这两个 theory hack,我和共同作者推导了GAN论文(Generative Adversarial Nets)中的第2个公式:https://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf ...



最后,Convex Optimization 这本书的3.2节有更多这样的theory hacks

PDF版电子书地址:https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf




【加入社群】


新智元 AI 技术 + 产业社群招募中,欢迎对 AI 技术 + 产业落地感兴趣的同学,加小助手微信号: aiera2015_3  入群;通过审核后我们将邀请进群,加入社群后务必修改群备注(姓名 - 公司 - 职位;专业群审核较严,敬请谅解)。


登录查看更多
2

相关内容

【斯坦福】凸优化圣经- Convex Optimization (附730pdf下载)
专知会员服务
223+阅读 · 2020年6月5日
【圣经书】《强化学习导论(2nd)》电子书与代码,548页pdf
专知会员服务
203+阅读 · 2020年5月22日
专知会员服务
109+阅读 · 2020年5月21日
元学习与图神经网络逻辑推导,55页ppt
专知会员服务
129+阅读 · 2020年4月25日
GANs最新综述论文: 生成式对抗网络及其变种如何有用
专知会员服务
72+阅读 · 2019年10月19日
GAN学习路线图:论文、应用、课程、书籍大总结
全球人工智能
16+阅读 · 2019年7月8日
论文推荐 | 生成对抗网络GAN论文TOP 10
机器学习算法与Python学习
5+阅读 · 2019年3月20日
万字综述之生成对抗网络(GAN)
PaperWeekly
43+阅读 · 2019年3月19日
GAN 生成对抗网络论文阅读路线图
GAN生成式对抗网络
27+阅读 · 2018年10月30日
大咖 | GAN之父Ian Goodfellow在Quora:机器学习十问十答
大数据文摘
3+阅读 · 2017年7月31日
Optimization for deep learning: theory and algorithms
Arxiv
105+阅读 · 2019年12月19日
Arxiv
3+阅读 · 2019年10月31日
Arxiv
8+阅读 · 2019年2月15日
Arxiv
7+阅读 · 2018年11月6日
Arxiv
4+阅读 · 2018年4月26日
Arxiv
11+阅读 · 2018年1月15日
Arxiv
12+阅读 · 2018年1月12日
VIP会员
相关资讯
GAN学习路线图:论文、应用、课程、书籍大总结
全球人工智能
16+阅读 · 2019年7月8日
论文推荐 | 生成对抗网络GAN论文TOP 10
机器学习算法与Python学习
5+阅读 · 2019年3月20日
万字综述之生成对抗网络(GAN)
PaperWeekly
43+阅读 · 2019年3月19日
GAN 生成对抗网络论文阅读路线图
GAN生成式对抗网络
27+阅读 · 2018年10月30日
大咖 | GAN之父Ian Goodfellow在Quora:机器学习十问十答
大数据文摘
3+阅读 · 2017年7月31日
相关论文
Optimization for deep learning: theory and algorithms
Arxiv
105+阅读 · 2019年12月19日
Arxiv
3+阅读 · 2019年10月31日
Arxiv
8+阅读 · 2019年2月15日
Arxiv
7+阅读 · 2018年11月6日
Arxiv
4+阅读 · 2018年4月26日
Arxiv
11+阅读 · 2018年1月15日
Arxiv
12+阅读 · 2018年1月12日
Top
微信扫码咨询专知VIP会员