《机器学习实战》代码(基于Python3)

2019 年 10 月 14 日 专知

导读

Github作 者TeFu irnever开源了自己的机器学习-学习博客和实战代码,相当适合初学者入门。


作者 | TeFuirnever
编辑 | Xiaowen


作者博客: https://blog.csdn.net/tefuirnever
Github: https://github.com/TeFuirnever/Machine-Learning-in-Action

《机器学习实战》博客 - 总目录

https://blog.csdn.net/TeFuirnever/article/details/99701256

《机器学习实战》代码

https://github.com/TeFuirnever/Machine-Learning-in-Action

第1章 - 机器学习基础 - 博客

https://blog.csdn.net/TeFuirnever/article/details/99734084

第2章 - k-近邻算法 - 博客

https://blog.csdn.net/TeFuirnever/article/details/99739021

Ch02-KNN - 代码

https://github.com/TeFuirnever/Machine-Learning-in-Action/tree/master/Ch02-KNN

第3章 - 决策树 - 博客

https://blog.csdn.net/TeFuirnever/article/details/99955515

Ch03-DecisionTree - 代码

https://github.com/TeFuirnever/Machine-Learning-in-Action/tree/master/Ch03-DecisionTree

第4章 - 基于概率论的分类方法:朴素贝叶斯 - 博客

https://blog.csdn.net/TeFuirnever/article/details/100108341

Ch04-NaiveBayes - 代码

https://github.com/TeFuirnever/Machine-Learning-in-Action/tree/master/Ch04-NaiveBayes

第5章 - Logistic 回归 - 博客

https://blog.csdn.net/TeFuirnever/article/details/100159150

Ch05-Logistic - 代码

https://github.com/TeFuirnever/Machine-Learning-in-Action/tree/master/Ch05-Logistic

第6章 - 支持向量机 - 博客

https://blog.csdn.net/TeFuirnever/article/details/99701322

Ch06-SVM - 代码

https://github.com/TeFuirnever/Machine-Learning-in-Action/tree/master/Ch06-SVM

第7章 - 利用AdaBoost 元算法提高分类性能 - 博客

https://blog.csdn.net/TeFuirnever/article/details/100191706

Ch07-AdaBoost - 代码

https://github.com/TeFuirnever/Machine-Learning-in-Action/tree/master/Ch07-AdaBoost

第8章 - 预测数值型数据:回归 - 博客

https://blog.csdn.net/TeFuirnever/article/details/100572055

Ch08-Regression - 代码

https://github.com/TeFuirnever/Machine-Learning-in-Action/tree/master/Ch08-Regression

第9章 - 树回归 - 博客

https://blog.csdn.net/TeFuirnever/article/details/101294837

Ch09-Regression Trees - 代码

https://github.com/TeFuirnever/Machine-Learning-in-Action/tree/master/Ch09-Regression%20Trees


另有六章待更新。


-END-
专 · 知


专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎登录www.zhuanzhi.ai,注册登录专知,获取更多AI知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程视频资料和与专家交流咨询
请加专知小助手微信(扫一扫如下二维码添加), 获取专知VIP会员码 ,加入专知人工智能主题群,咨询技术商务合作~
点击“阅读原文”,了解注册成为 专知VIP会员
登录查看更多
32

相关内容

专知会员服务
139+阅读 · 2020年5月19日
【干货书】机器学习Python实战教程,366页pdf
专知会员服务
340+阅读 · 2020年3月17日
一网打尽!100+深度学习模型TensorFlow与Pytorch代码实现集合
专知会员服务
116+阅读 · 2019年12月24日
【电子书】Flutter实战305页PDF免费下载
专知会员服务
22+阅读 · 2019年11月7日
【书籍】深度学习框架:PyTorch入门与实践(附代码)
专知会员服务
163+阅读 · 2019年10月28日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Python机器学习课程(代码与教程)
专知
36+阅读 · 2019年5月13日
用Python实现流行机器学习算法
Python程序员
21+阅读 · 2018年12月31日
手把手教你用Python库Keras做预测(附代码)
数据派THU
14+阅读 · 2018年5月30日
【源码分享】机器学习之Python支持向量机
机器学习算法与Python学习
3+阅读 · 2018年3月13日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
机器学习方法体系汇总
机器学习算法与Python学习
9+阅读 · 2017年8月12日
推荐|TensorFlow/PyTorch/Sklearn实现的五十种机器学习模型
全球人工智能
24+阅读 · 2017年7月14日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
26+阅读 · 2020年3月13日
Arxiv
7+阅读 · 2019年5月31日
Deep Learning for Energy Markets
Arxiv
10+阅读 · 2019年4月10日
Arxiv
8+阅读 · 2019年3月21日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
专知会员服务
139+阅读 · 2020年5月19日
【干货书】机器学习Python实战教程,366页pdf
专知会员服务
340+阅读 · 2020年3月17日
一网打尽!100+深度学习模型TensorFlow与Pytorch代码实现集合
专知会员服务
116+阅读 · 2019年12月24日
【电子书】Flutter实战305页PDF免费下载
专知会员服务
22+阅读 · 2019年11月7日
【书籍】深度学习框架:PyTorch入门与实践(附代码)
专知会员服务
163+阅读 · 2019年10月28日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Python机器学习课程(代码与教程)
专知
36+阅读 · 2019年5月13日
用Python实现流行机器学习算法
Python程序员
21+阅读 · 2018年12月31日
手把手教你用Python库Keras做预测(附代码)
数据派THU
14+阅读 · 2018年5月30日
【源码分享】机器学习之Python支持向量机
机器学习算法与Python学习
3+阅读 · 2018年3月13日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
机器学习方法体系汇总
机器学习算法与Python学习
9+阅读 · 2017年8月12日
推荐|TensorFlow/PyTorch/Sklearn实现的五十种机器学习模型
全球人工智能
24+阅读 · 2017年7月14日
相关论文
A Survey on Deep Learning for Named Entity Recognition
Arxiv
26+阅读 · 2020年3月13日
Arxiv
7+阅读 · 2019年5月31日
Deep Learning for Energy Markets
Arxiv
10+阅读 · 2019年4月10日
Arxiv
8+阅读 · 2019年3月21日
Arxiv
5+阅读 · 2017年12月14日
Top
微信扫码咨询专知VIP会员