NLP面试宝典:38个最常见NLP问题答案一文get

2019 年 12 月 26 日 新智元



  新智元报道  

来源:greatlearning

编辑:向学

【新智元导读】自然语言处理对社会的影响越来越广泛,但它又是人工智能中最难的子领域之一;因此现在很多公司都在四处寻找大量专业人才!为了帮助应聘者更加从容应对自然语言处理面试,我们特别推荐了面试中最常见的38个问题与答案。戳右边链接上 新智元小程序 了解更多!


自然语言处理(Natural Language Processing,NLP)是指帮助机器理解和分析自然语言;它是利用机器学习算法从数据中提取所需信息的一个自动化的过程。


自然语言处理虽然只是人工智能的一个子领域,但它对我们日常生活与学习的影响日渐深远。自然语言处理也是人工智能中难度最大的子领域之一,也正是这样的挑战给我们带来了更多机会;目前很多公司都在自然语言处理上发力,行业急需大量专业人才!


在申请与自然语言处理相关的工作职位时,应聘者往往不清楚面试官可能会问什么样的问题。应聘者除了学习NLP的基础知识外,专门为面试做准备也是很重要的。以下是NLP面试中常见的问题和答案的列表,并对其作了解释,希望能对应聘者成功拿到好的offer起到帮助。



1.下列哪些技术能被用于关键词归一化(keyword normalization),即把关键词转化为其基本形式?

A. 词形还原(Lemmatization)

B. 探测法(Soundex)
C. 余弦相似度(Cosine Similarity)

D. N-grams

答案:A

词形还原有助于得到一个词的基本形式,例如:playing -> play, eating -> eat等;其他选项的技术都有其他使用目的。


2.下列哪些技术能被用于计算两个词向量之间的距离?

A. 词形还原(Lemmatization)

B. 欧氏距离(Euclidean Distance)

C. 余弦相似度(Cosine Similarity)

D. N-grams

答案:B与C
两个词向量之间的距离可以用余弦相似度和欧氏距离来计算。余弦相似度在两个词的向量之间建立一个余弦角,两个词向量之间的余弦角接近表示词相似,反之亦然。例如,与“Football”、“NewDelhi”这2个词相比,“Football”、“Cricket” 这两个词之间的余弦角将更接近于1。通常,文档相似度是通过文档中的内容(或单词)在语义上的接近程度来衡量的;当它们接近时,相似度指数接近于1,否则接近于0。两点之间的欧氏距离是连接这两点的最短路径的长度。通常用毕达哥拉斯定理计算三角形。


3.文本语料库的可能特征是什么?

A. 文本中词计数

B. 词的向量标注

C. 词性标注(Part of Speech Tag) 

D. 基本依存语法

E. 以上所有

答案:E

以上所有这些都可以作为文本语料库的特征。


4.你在20K文档的输入数据上为机器学习模型创建了文档-词矩阵(document-term matrix)。以下哪项可用于减少数据维度?

(1)关键词归一化(Keyword Normalization)

(2)潜在语义索引(Latent Semantic Indexing)

(3)隐狄利克雷分布(Latent Dirichlet Allocation)

A.  只有(1)

B. (2)、(3)

C. (1)、(3)

D. (1)、(2)、(3)

答案:D


5.哪些文本分析技术可被用于名词短语检测、动词短语检测、主语检测和宾语检测?

A. 词性标注(Part of Speech Tagging)

B. Skip Gram 和N-Gram 提取

C. 连续性词袋(Bag of Words)

D. 依存句法分析(Dependency Parsing)和成分句法分析(Constituency Parsing)

答案:D


6.用余弦相似度表示的词之间的差异将显著高于0.5

A. 正确

B. 错误

答案:A


7.下列哪项是关键词归一化技术?

A. 词干提取(Stemming)

B. 词性标注(Part of Speech)

C. 命名实体识别(Named Entity Recognition)

D. 词形还原(Lemmatization)

答案:A与 D

词性标注(POS)与命名实体识别(NER)不是关键词归一化技术。


8.下面哪个是NLP用例?

  1. 从图像中检测物体
  2. 面部识别
  3. 语音生物识别
  4. 文本摘要

答案:D

A和B是计算机视觉应用案例,C是语音应用案例。


9.在包含N个文档的语料库中,随机选择的一个文档总共包含T个词条,词条“hello”出现 K 次。如果词条“hello”出现在全部文档的数量接近三分之一,则TF(词频)和 IDF(逆文档频率)的乘积的正确值是多少?
A. KT * Log(3)
B. T * Log(3) / K
C. K * Log(3) / T
D. Log(3) / KT
答案:C

10.  下列算法中减少了常用词的权重,增加了文档集合中不常用词的权重的是?
A. 词频(TF)
B. 逆文档频率(IDF)
C. Word2Vec
D. 隐狄利克雷分布(Latent Dirichlet Allocation)
答案:B


11.从句子中删除“and”、“is”、“a”、“an”、“the” 这样的词的过程被称为?
A. 词干提取(Stemming)
b. 词形还原(Lemmatization)
C. 停用词(Stop Words)
D. 以上所有
答案:C


12.将句子或段落转换为tokens的过程称为词干提取(Stemming)
A. 正确
B. 错误
答案:B
这是分词(tokenization),而不是词干提取


13.在给到任何神经网络之前,Tokens都会被转换成数字
A. 正确
B. 错误
答案:A
在自然语言处理中,所有的词在输入到神经网络之前都被转换成数字。

14.找出其中的异类
A. nltk
B. scikit learn
C. SpaCy
D. BERT
答案:D
除了BERT是一个词嵌入方法以外,其它 都是NLP库。

15.TF-IDF帮你建立           
A. 文档中出现频率最高的词
B. 文档中最重要的词
答案:B
TF-IDF有助于确定特定词在文档语料库中的重要性。TF-IDF考虑了该词在文档中出现的次数,并被出现在语料库中的文档数所抵消。


16.从给定的句子、段落中识别人名、组织名的过程称为?
A. 词干提取(Stemming)
B. 词形还原(Lemmatization)
C. 停用词消除(Stop Word Removal)
D. 命名实体识别(Named Entity Recognition)
答案:D

17.下列哪一项不是预处理技术?
A.  词干提取和词形还原(Stemming and Lemmatization)
B.  转换成小写(Converting to Lowercase)
C.  删除标点符号(Remove Punctuation)
D.  删除停用词(Removal of Stop Words)
E.  情绪分析(Sentiment Analysis)
答案:E
情绪分析不是一种预处理技术。它是在预处理之后完成的,是一个NLP用例。所有其他列出的都用作语句预处理的一部分。


18.在文本挖掘中,可以使用以下哪项命令完成将文本转换为tokens,然后将其转换为整数或浮点向量的操作?
A. CountVectorizer
B. TF-IDF
C. 词袋模型(Bag of Words)
D. NERs
答案:A
CountVectorizer可帮助完成上述操作,而其他方法则不适用。


19.将词表示成向量被称为神经词嵌入(Neural Word Embeddings)?
  1. 正确
  2. 错误
答案:A


20.下列哪种词嵌入支持上下文建模(Context Modeling)?
A. Word2Vec
B. GloVe
C. BERT
D. 以上所有
答案: C
只有BERT(Bidirectional Encoder Representations from Transformer)支持上下文建模。

21.下列哪种嵌入方式支持双向上下文(Bidirectional Context)?
  1. Word2Vec
  2. BERT
  3. GloVe
  4. 以上所有
答案:B
只有BERT支持双向上下文。Word2Vec和GloVe是词嵌入,它们不提供任何上下文。


22.下列哪种词嵌入可以自定义训练特定主题?
A. Word2Vec
B. BERT
C. GloVe
D. 以上所有
答案:B


23.词嵌入捕获多维数据,并表示为向量?
  1. 正确
  2. 错误
答案:A


24.词嵌入向量有助于确定2个tokens之间的距离?
  1. 正确
  2. 错误
答案:A
可以使用余弦相似度来确定 通过词嵌入来表示的 两个向量之间的距离


25.语言偏见是由词嵌入训练中使用的历史数据引入的,下面哪项不是偏见的示例?
  1. 新德里之于印度,北京之于中国
  2. 男人之于电脑,女人之于家庭主妇
答案:A
陈述B是一种偏见,因为它把女人变成了家庭主妇,而陈述A不是一种偏见。


26. 以下哪项是解决NLP用例(如语义相似性、阅读理解和常识推理)的更好选择?
A. ELMo
B. Open AI’s GPT
C. ULMFit
答案:B
Open AI的GPT能够通过使用Transformer模型的注意力机制(Attention Mechanism)来学习数据中的复杂模式,因此更适合于诸如语义相似性、阅读理解和常识推理之类的复杂用例。

27. Transformer架构首先是由下列哪项引入的?
A. GloVe
B. BERT
C. Open AI’s GPT
D. ULMFit
答案:C
ULMFit拥有基于LSTM的语言建模架构;这之后被Open AI的GPT的Transformer架构所取代。

28. 以下哪种架构可以更快地训练,且需要更少的训练数据?
A. 基于LSTM的语言建模
b. Transformer架构
答案:B
从GPT开始,Transformer架构就得到了支持,而且训练速度更快,所需的数据量也更少。

29. 相同的词可以通过___________来实现多个词嵌入?
  1. GloVe
  2. Word2Vec
  3. ELMo
  4. Nltk
答案: C
ELMo(Embeddings from Language Models)词嵌入支持同一个词的多个嵌入,这有助于在不同的上下文中使用同一个词,从而捕获上下文而不仅仅是词的意思,这与GloVe、Word2Vec不同。 Nltk不是词嵌入。


30. 对于一个给定的token,其输入表示为它的token嵌入、段嵌入(Segment Embedding)、位置嵌入(Position Embedding)的总和

A. ELMo
B. GPT
C. BERT
D. ULMFit
答案:C
BERT使用token嵌入、段嵌入(Segment Embedding)、位置嵌入(Position Embedding)。


31. 从左到右和从右到左训练两个独立的LSTM语言模型,并将它们简单地连接起来
A. GPT
B. BERT
C. ULMFit
D. ELMo
答案:D
ELMo尝试训练两个独立的LSTM语言模型(从左到右和从右到左),并将结果连接起来以产生词嵌入。


32.用于产生词嵌入的单向语言模型
  1. BERT
  2. GPT
  3. ELMo
  4. Word2Vec
答案:B

33. 在这种架构中,对句子中所有词之间的关系进行建模,而与它们的位置无关。这是哪种架构?
A. OpenAI GPT
B. ELMo
C. BERT
D. ULMFit
答案:C
BERT Transformer架构将句子中每个词和所有其他词之间的关系建模,以生成注意力分数。这些注意力分数随后被用作所有词表示的加权平均值的权重,它们被输入到完全连接的网络中以生成新的表示。


34.列出10个使用NLP技术解决的用例
情绪分析(Sentiment Analysis)
语言翻译(英语到德语、中文到英语等等)
文档摘要(Document Summarization)
问题回答
句子完成
属性提取(从文档中提取关键信息)
聊天机器人交互
主题分类(Topic Classification)
意图提取(Intent Extraction)
语法或句子更正
图像描述生成(Image Captioning)
文档排名(Document Ranking)
自然语言推理


35. Transformer模型关注句子中最重要的词
A. 正确
B. 错误
答案:A
Transformer模型中的注意机制用于建模所有词之间的关系,并为最重要的词提供权重。

36.以下哪种NLP模型的准确性最高?
A. BERT
B. XLNET
C. GPT-2
D. ELMo
答案:B. XLNET
XLNET在所有模型中都给出了最好的准确性。它在20个任务上都优于BERT,在情感分析、问答、自然语言推理等18个任务上都取得了顶尖的结果。


37.排列语言模型(Permutation Language Models)是下列哪项的特点?
A. BERT
B. EMMo
C. GPT
D. XLNET
答案:D
XLNET提供了基于排列的语言模型,这是与BERT的一个关键区别。


38. Transformer XL使用相对位置嵌入
A. 正确
B. 错误
答案:A
Transformer XL使用嵌入来编码词之间的相对距离,而不是必须表示词的绝对位置。这个嵌入用于计算任意两个词之间的注意力得分,这两个词之间可以在之前或之后被n个词分隔开。

这样,你就有了所有可能的NLP面试问题。现在就去尽你最大的努力吧!


参考资料:
https://www.greatlearning.in/blog/nlp-interview-questions/

登录查看更多
1

相关内容

最新《多任务学习》综述,39页pdf
专知会员服务
263+阅读 · 2020年7月10日
深度学习自然语言处理概述,216页ppt,Jindřich Helcl
专知会员服务
212+阅读 · 2020年4月26日
算法与数据结构Python,369页pdf
专知会员服务
161+阅读 · 2020年3月4日
【论文推荐】文本分析应用的NLP特征推荐
专知会员服务
33+阅读 · 2019年12月8日
NLP基础任务:文本分类近年发展汇总,68页超详细解析
专知会员服务
73+阅读 · 2019年10月19日
面经 | 算法工程师面试题汇总
极市平台
12+阅读 · 2019年10月14日
BAT机器学习面试题1000题(331~335题)
七月在线实验室
12+阅读 · 2018年8月13日
深度学习面试100题(第56-60题)
七月在线实验室
9+阅读 · 2018年7月23日
图解机器学习的常见算法
机器学习算法与Python学习
5+阅读 · 2018年4月2日
面试整理:关于代价函数,正则化
数据挖掘入门与实战
8+阅读 · 2018年3月29日
一文学会最常见的10种NLP处理技术(附资源&代码)
深度学习面试你必须知道这些答案
AI研习社
18+阅读 · 2017年10月31日
BAT机器学习面试1000题系列(第76~80题)
七月在线实验室
5+阅读 · 2017年10月13日
Arxiv
22+阅读 · 2018年8月30日
Learning to Focus when Ranking Answers
Arxiv
5+阅读 · 2018年8月8日
Arxiv
8+阅读 · 2018年5月15日
VIP会员
相关VIP内容
最新《多任务学习》综述,39页pdf
专知会员服务
263+阅读 · 2020年7月10日
深度学习自然语言处理概述,216页ppt,Jindřich Helcl
专知会员服务
212+阅读 · 2020年4月26日
算法与数据结构Python,369页pdf
专知会员服务
161+阅读 · 2020年3月4日
【论文推荐】文本分析应用的NLP特征推荐
专知会员服务
33+阅读 · 2019年12月8日
NLP基础任务:文本分类近年发展汇总,68页超详细解析
专知会员服务
73+阅读 · 2019年10月19日
相关资讯
面经 | 算法工程师面试题汇总
极市平台
12+阅读 · 2019年10月14日
BAT机器学习面试题1000题(331~335题)
七月在线实验室
12+阅读 · 2018年8月13日
深度学习面试100题(第56-60题)
七月在线实验室
9+阅读 · 2018年7月23日
图解机器学习的常见算法
机器学习算法与Python学习
5+阅读 · 2018年4月2日
面试整理:关于代价函数,正则化
数据挖掘入门与实战
8+阅读 · 2018年3月29日
一文学会最常见的10种NLP处理技术(附资源&代码)
深度学习面试你必须知道这些答案
AI研习社
18+阅读 · 2017年10月31日
BAT机器学习面试1000题系列(第76~80题)
七月在线实验室
5+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员