我是怎样爬下6万共享单车数据并进行分析的(附代码)

2017 年 11 月 22 日 数据派THU

来源:钱塘大数据

本文长度为3297字,建议阅读7分钟

本文为你解答用Pyhon获取、分析单车数据的过程,并为你分析得出的结论。


后台回复关键词“摩拜”获取完整源码(文末有福利呦~)


共享经济的浪潮席卷着各行各业,而出行行业是这股大潮中的主要分支。如今,在城市中随处可见共享单车的身影,给人们的生活出行带来了便利。相信大家总会遇到这样的窘境,在APP中能看到很多单车,但走到那里的时候,才发现车并不在那里。有些车不知道藏到了哪里;有些车或许是在高楼的后面,由于有GPS的误差而找不到了;有些车被放到了小区里面,一墙之隔让骑车人无法获得到车。


那么有没有一个办法通过获得这些单车的数据,来分析这些车是否变成了僵尸车?是否有人故意放到小区里面让人无法获取呢?带着这些问题,笔者开始了研究如何获取这些数据。


从哪里获得数据


如果你能够看到数据,那么我们总有办法自动化的获取到这些数据。只不过获取数据的方式方法决定了获取数据的效率。


对于摩拜单车的数据分析这个任务而言,这个爬虫要能够在短时间内(通常是10分钟左右)获取到更多的数据,对于数据分析才有用处。那么数据来源于哪里?


最直接的来源是摩拜单车的APP。现代的软件设计都讲究前后端分离,而且服务端会同时服务于APP、网页等。在这种趋势下我们只需要搞清楚软件的HTTP请求就好了。一般而言有以下一些工具可以帮忙:


直接抓包:

  • Wireshark (在路由器或者电脑)

  • Shark for Root (Android)


用代理进行HTTP请求抓包及调试:

  • Fiddler 4

  • Charles

  • Packet Capture (Android)


由于我的手机没有root,在路由器上抓包又太多的干扰,对于https也不好弄。所以只能首先采用Fiddler或者Charles的方式试试。


挂上Fiddler的代理,然后在手机端不停的移动位置,看有没有新的请求。但遗憾的是似乎请求都是去拿高德地图的,并没有和摩拜车相关的数据。


那怎么一回事?试试手机端的。换成Packet Capture后果然就有流量了,在请求中找到了我最关心的那个:


这个API请求一看就很显然了,在postman中试了一下能够正确的返回信息,看来就是你了!


高兴得太早。


连续爬了几天的数据,将数据进行一分析,发现摩拜单车的GPS似乎一直在跳动,有时候跳动会超过几公里的距离,显然不是一个正常的值。


难道是他们的接口做了手脚返回的是假数据?我观察到即便在APP中,单车返回的数据也有跳动。有某一天凌晨到第二天早上,我隔段时间刷新一下我家附近的车,看看是否真的如此。


图片我找不到了,但是观察后得出的结论是,APP中返回的位置确实有问题。有一台车放在一个很偏僻的位置,一会儿就不见了,待会儿又回来了,和我抓下来的数据吻合。


而且这个跳动和手机、手机号、甚至移动运营商没有关系,说明这个跳动是摩拜接口的问题,也可以从另一方面解释为什么有时候看到车但其实那里没有车。


这是之前发的一个朋友圈的视频截图,可以看到在营门口附近有一个尖,在那里其实车是停住的,但是GPS轨迹显示短时间内在附近攒动,甚至攒动到很远,又回到那个位置。


这样的数据对于数据分析来讲根本没法用,我差点就放弃了。


随着微信小程序的火爆,摩拜单车也在第一时间出了小程序。我一看就笑了,不错,又给我来了一个数据源,试试。


用Packet Capture抓了一次数据后很容易确定API。抓取后爬取了两三天的数据,发现出现了转机,数据符合正常的单车的轨迹。


剩下事情,就是提高爬虫的效率了。


其他尝试


有时候直接分析APP的源代码会很方便的找到API入口,将摩拜的Android端的APP进行反编译,但发现里面除了一些资源文件有用外,其他的文件都是用奇虎360的混淆器加壳的。网上有文章分析如何进行脱壳,但我没有太多时间去钻研,也就算了。


摩拜单车的API之所以很容易抓取和分析,很大程度上来讲是由于API设计的太简陋:


  • 仅使用http请求,使得很容易进行抓包分析

  • 在这些API中都没有对request进行一些加密,使得自己的服务很容易被人利用。

  • 另外微信小程序也是泄露API的一个重要来源,毕竟在APP中request请求可以通过native代码进行加密然后在发出,但在小程序中似乎还没有这样的功能。


如果大家有兴趣,可以试着看一下小蓝单车APP的request,他们使用https请求,对数据的request进行了加密,要抓取到他们的数据难度会增加非常多。


当然了,如果摩拜单车官方并不care数据的事情的话,这样的API设计也是ok的。


声明:


此爬虫仅用于学习、研究用途,请不要用于非法用途。任何由此引发的法律纠纷自行负责。

没耐心看文章的请直接:公众号菜单栏回复
“摩拜”获取完整源码


目录结构


    \analysis - jupyter做数据分析
    \influx-importer - 导入到influxdb,但之前没怎么弄好
    \modules - 代理模块
    \web - 实时图形化显示模块,当时只是为了学一下react而已,效果请见这里
    crawler.py - 爬虫核心代码
    importToDb.py - 导入到postgres数据库中进行分析
    sql.sql - 创建表的sql
    start.sh - 持续运行的脚本


思路


核心代码放在crawler.py中,数据首先存储在sqlite3数据库中,然后去重复后导出到csv文件中以节约空间。

摩拜单车的API返回的是一个正方形区域中的单车,我只要按照一块一块的区域移动就能抓取到整个大区域的数据。

left,top,right,bottom定义了抓取的范围,目前是成都市绕城高速之内以及南至南湖的正方形区域。offset定义了抓取的间隔,现在以0.002为基准,在DigitalOcean 5$的服务器上能够15分钟内抓取一次。

    def start(self):
        left = 30.7828453209
        top = 103.9213455517
        right = 30.4781772402
        bottom = 104.2178123382

        offset = 0.002

        if os.path.isfile(self.db_name):
            os.remove(self.db_name)

        try:
            with sqlite3.connect(self.db_name) as c:
                c.execute('''CREATE TABLE mobike
                    (Time DATETIME, bikeIds VARCHAR(12), bikeType TINYINT,distId INTEGER,distNum TINYINT, type TINYINT, x DOUBLE, y DOUBLE)''')
        except Exception as ex:
            pass

然后就启动了250个线程,至于你要问我为什么没有用协程,哼哼~~我当时没学~~~其实是可以的,说不定效率更高。

由于抓取后需要对数据进行去重,以便消除小正方形区域之间重复的部分,最后的group_data正是做这个事情。

        executor = ThreadPoolExecutor(max_workers=250)
        print("Start")
        self.total = 0
        lat_range = np.arange(left, right, -offset)
        for lat in lat_range:
            lon_range = np.arange(top, bottom, offset)
            for lon in lon_range:
                self.total += 1
                executor.submit(self.get_nearby_bikes, (lat, lon))

        executor.shutdown()
        self.group_data()


最核心的API代码在这里。小程序的API接口,搞几个变量就可以了,十分简单。

    def get_nearby_bikes(self, args):
        try:
            url = "https://mwx.mobike.com/mobike-api/rent/nearbyBikesInfo.do"

            payload = "latitude=%s&longitude=%s&errMsg=getMapCenterLocation" % (args[0], args[1])

            headers = {
                'charset': "utf-8",
                'platform': "4",
                "referer":"https://servicewechat.com/wx40f112341ae33edb/1/",
                'content-type': "application/x-www-form-urlencoded",
                'user-agent': "MicroMessenger/6.5.4.1000 NetType/WIFI Language/zh_CN",
                'host': "mwx.mobike.com",
                'connection': "Keep-Alive",
                'accept-encoding': "gzip",
                'cache-control': "no-cache"
            }

            self.request(headers, payload, args, url)
        except Exception as ex:
            print(ex)


最后你可能要问频繁的抓取IP没有被封么?其实摩拜单车是有IP的访问速度限制的,只不过破解之道非常简单,就是用大量的代理。

我是有一个代理池,每天基本上有8000以上的代理。在ProxyProvider中直接获取到这个代理池然后提供一个pick函数用于随机选取得分前50的代理。


请注意,我的代理池是每小时更新的,但是代码中提供的jsonblob的代理列表仅仅是一个样例,过段时间后应该大部分都作废了。

在这里用到一个代理得分的机制。我并不是直接随机选择代理,而是将代理按照得分高低进行排序。每一次成功的请求将加分,而出错的请求将减分。


这样一会儿就能选出速度、质量最佳的代理。如果有需要还可以存下来下次继续用。

class ProxyProvider:
    def __init__(self, min_proxies=200):
        self._bad_proxies = {}
        self._minProxies = min_proxies
        self.lock = threading.RLock()

        self.get_list()

    def get_list(self):
        logger.debug("Getting proxy list")
        r = requests.get("https://jsonblob.com/31bf2dc8-00e6-11e7-a0ba-e39b7fdbe78b", timeout=10)
        proxies = ujson.decode(r.text)
        logger.debug("Got %s proxies", len(proxies))
        self._proxies = list(map(lambda p: Proxy(p), proxies))

    def pick(self):
        with self.lock:
            self._proxies.sort(key = lambda p: p.score, reverse=True)
            proxy_len = len(self._proxies)
            max_range = 50 if proxy_len > 50 else proxy_len
            proxy = self._proxies[random.randrange(1, max_range)]
            proxy.used()
            return proxy


在实际使用中,通过proxyProvider.pick()选择代理,然后使用。如果代理出现任何问题,则直接用proxy.fatal_error()降低评分,这样后续就不会选择到这个代理了。

    def request(self, headers, payload, args, url):
        while True:
            proxy = self.proxyProvider.pick()
            try:
                response = requests.request(
                    "POST", url, data=payload, headers=headers,
                    proxies={"https": proxy.url},
                    timeout=5,verify=False
                )

                with self.lock:
                    with sqlite3.connect(self.db_name) as c:
                        try:
                            print(response.text)
                            decoded = ujson.decode(response.text)['object']
                            self.done += 1
                            for x in decoded:
                                c.execute("INSERT INTO mobike VALUES (%d,'%s',%d,%d,%s,%s,%f,%f)" % (
                                    int(time.time()) * 1000, x['bikeIds'], int(x['biketype']), int(x['distId']),
                                    x['distNum'], x['type'], x['distX'],
                                    x['distY']))

                            timespend = datetime.datetime.now() - self.start_time
                            percent = self.done / self.total
                            total = timespend / percent
                            print(args, self.done, percent * 100, self.done / timespend.total_seconds() * 60, total,
                                  total - timespend)
                        except Exception as ex:
                            print(ex)
                    break
            except Exception as ex:
                proxy.fatal_error()


抓取了摩拜单车的数据并进行了大数据分析。以下数据分析自1月19日整日的数据,范围成都绕城区域以及至华阳附近(天府新区)内。成都的摩拜单车的整体情况如下:


标准、Lite车型数量相当


摩拜单车在成都大约已经有6万多辆车,两种类型的车分别占有率为55%和44%,可见更为好骑的Lite版本的占有率在提高。(1为标准车,2为Lite车型)




三成左右的车没有移动过


数据分析显示,有三成的单车并没有任何移动,这说明这些单车有可能被放在不可获取或者偏僻地方。市民的素质还有待提高啊。


出行距离以3公里以下为主


数据分析显示3公里以下的出行距离占据了87.2%,这也十分符合共享单车的定位。100米以下的距离也占据了大量的数据,但认为100米以下的数据为GPS的波动,所以予以排除。


出行距离分布


骑行次数以5次以下居多


单车的使用频率越高共享的效果越好。从摩拜单车的数据看,在流动的单车中,5次以下占据了60%左右的出行。但1次、2次的也占据了30%左右的份额,说明摩拜单车的利用率也不是很高。



单车骑行次数


单车骑行次数


从单车看城市发展


从摩拜单车的热图分布来看,成都已经逐步呈现“双核”发展的态势,城市的新中心天府新区正在聚集更多的人和机会。


双核发展


原来的老城区占有大量的单车,在老城区,热图显示在东城区占有更多的单车,可能和这里的商业(春熙路、太古里、万达)及人口密集的小区有直接的联系。


老城区


而在成都的南部天府新区越来越多也茁壮的发展起来,商业区域和住宅区域区分明显。在晚上,大量的单车聚集在华阳、世纪城、中和,而在上班时间,则大量聚集在软件园附近。



软件园夜间



软件园白天


编辑:文婧


答应大家的福利

感谢大家对数据派的关注和支持,点点给大家放送福利啦~点击文末“阅读原文”领取最高90天ofo小黄车免费骑行月卡!


点击“阅读原文”领取福利~

登录查看更多
0

相关内容

【KDD2020】自适应多通道图卷积神经网络
专知会员服务
119+阅读 · 2020年7月9日
【实用书】学习用Python编写代码进行数据分析,103页pdf
专知会员服务
192+阅读 · 2020年6月29日
商业数据分析,39页ppt
专知会员服务
159+阅读 · 2020年6月2日
【实用书】Python爬虫Web抓取数据,第二版,306页pdf
专知会员服务
117+阅读 · 2020年5月10日
【实用书】流数据处理,Streaming Data,219页pdf
专知会员服务
76+阅读 · 2020年4月24日
【2020新书】如何认真写好的代码和软件,318页pdf
专知会员服务
63+阅读 · 2020年3月26日
近期必读的5篇 CVPR 2019【图卷积网络】相关论文和代码
专知会员服务
32+阅读 · 2020年1月10日
【干货】用BRET进行多标签文本分类(附代码)
专知会员服务
84+阅读 · 2019年12月27日
渗透某德棋牌游戏
黑白之道
12+阅读 · 2019年5月17日
7 款实用到哭的App,只说一遍
高效率工具搜罗
84+阅读 · 2019年4月30日
免费!Google Colab现已支持英伟达T4 GPU
新智元
5+阅读 · 2019年4月25日
使用 Canal 实现数据异构
性能与架构
20+阅读 · 2019年3月4日
文本分析与可视化
Python程序员
9+阅读 · 2019年2月28日
我是一个爬虫
码农翻身
12+阅读 · 2018年6月4日
Python 爬虫实践:《战狼2》豆瓣影评分析
数据库开发
5+阅读 · 2018年3月19日
PyTorch 到底好用在哪里?
AI研习社
3+阅读 · 2017年10月27日
共享单车惨遭共享:一款App能骑9种车到底是啥神器?
黑客技术与网络安全
4+阅读 · 2017年7月6日
你见过马化腾17年前写的代码吗?
互联网it观察
5+阅读 · 2017年7月3日
The Evolved Transformer
Arxiv
5+阅读 · 2019年1月30日
Adaptive Neural Trees
Arxiv
4+阅读 · 2018年12月10日
Arxiv
5+阅读 · 2018年5月28日
VIP会员
相关VIP内容
【KDD2020】自适应多通道图卷积神经网络
专知会员服务
119+阅读 · 2020年7月9日
【实用书】学习用Python编写代码进行数据分析,103页pdf
专知会员服务
192+阅读 · 2020年6月29日
商业数据分析,39页ppt
专知会员服务
159+阅读 · 2020年6月2日
【实用书】Python爬虫Web抓取数据,第二版,306页pdf
专知会员服务
117+阅读 · 2020年5月10日
【实用书】流数据处理,Streaming Data,219页pdf
专知会员服务
76+阅读 · 2020年4月24日
【2020新书】如何认真写好的代码和软件,318页pdf
专知会员服务
63+阅读 · 2020年3月26日
近期必读的5篇 CVPR 2019【图卷积网络】相关论文和代码
专知会员服务
32+阅读 · 2020年1月10日
【干货】用BRET进行多标签文本分类(附代码)
专知会员服务
84+阅读 · 2019年12月27日
相关资讯
渗透某德棋牌游戏
黑白之道
12+阅读 · 2019年5月17日
7 款实用到哭的App,只说一遍
高效率工具搜罗
84+阅读 · 2019年4月30日
免费!Google Colab现已支持英伟达T4 GPU
新智元
5+阅读 · 2019年4月25日
使用 Canal 实现数据异构
性能与架构
20+阅读 · 2019年3月4日
文本分析与可视化
Python程序员
9+阅读 · 2019年2月28日
我是一个爬虫
码农翻身
12+阅读 · 2018年6月4日
Python 爬虫实践:《战狼2》豆瓣影评分析
数据库开发
5+阅读 · 2018年3月19日
PyTorch 到底好用在哪里?
AI研习社
3+阅读 · 2017年10月27日
共享单车惨遭共享:一款App能骑9种车到底是啥神器?
黑客技术与网络安全
4+阅读 · 2017年7月6日
你见过马化腾17年前写的代码吗?
互联网it观察
5+阅读 · 2017年7月3日
Top
微信扫码咨询专知VIP会员