【导读】IanGoodfellow、YoshuaBengio、AaronCourville的《深度学习》花书被奉为AI圣经。但是要掌握这本书却并非易事。MingchaoZhu同学基于数学推导和产生原理重新描述了书中的概念,并用Python (numpy 库为主) 复现了书本内容,在Github上开放,欢迎大家查看学习。
地址:
https://github.com/MingchaoZhu/DeepLearning
《深度学习》是深度学习领域唯一的综合性图书,全称也叫做深度学习 AI圣经(Deep Learning),由三位全球知名专家IanGoodfellow、YoshuaBengio、AaronCourville编著,全书囊括了数学及相关概念的背景知识,包括线性代数、概率论、信息论、数值优化以及机器学习中的相关内容。同时,它还介绍了工业界中实践者用到的深度学习技术,包括深度前馈网络、正则化、优化算法、卷积网络、序列建模和实践方法等,并且调研了诸如自然语言处理、语音识别、计算机视觉、在线推荐系统、生物信息学以及视频游戏方面的应用。最后,深度学习全书还提供了一些研究方向,涵盖的理论主题包括线性因子模型、自编码器、表示学习、结构化概率模型、蒙特卡罗方法、配分函数、近似推断以及深度生成模型,适用于相关专业的大学生或研究生使用。
《深度学习》可以说是深度学习与人工智能的入门宝典,许多算法爱好者、机器学习培训班、互联网企业的面试,很多都参考这本书。但本书晦涩,加上官方没有提供代码实现,因此某些地方较难理解。本站基于数学推导和产生原理重新描述了书中的概念,并用Python (numpy 库为主) 复现了书本内容(推导过程和代码实现均见pdf文件,重要部分的实现代码也放入code文件夹中)。
附带《深度学习》中英文版下载
本书包括3 个部分:第1 部分介绍基本的数学工具和机器学习的概念,它们是深度学习的预备知识;第2 部分系统深入地讲解现今已成熟的深度学习方法和技术;第3 部分讨论某些具有前瞻性的方向和想法,它们被公认为是深度学习未来的研究重点。
本书适合各类读者阅读,包括相关专业的大学生或研究生,以及不具有机器学习或统计背景、但是想要快速补充深度学习知识,以便在实际产品或平台中应用的软件工程师。
目录
第1部分 应用数学与机器学习基础
第2章 线性代数
第3章 概率与信息论
第4章 数值计算
第5章 机器学习基础
第2部分 深层网络:现代实践
第6章 深度前馈网络
第7章 深度学习中的正则化
第8章 深度模型中的优化
第9章 卷积网络
第10章 序列建模:循环和递归网络
第11章 实践方法论
第12章 应用
第3部分 深度学习研究
第13章 线性因子模型
第14章 自编码器
第15章 表示学习
第16章 深度学习中的结构化概率模型
第17章 蒙特卡罗方法
第18章 直面配分函数
第19章 近似推断
第20章 深度生成模型
专知便捷查看
便捷下载,请关注专知公众号(点击上方蓝色专知关注)
后台回复“DL802” 就可以获取《AI圣经书-深度学习 (Deep Learning) 中英文版本》专知下载链接