数据挖掘与深度学习毫无疑问是大数据时代最炙手可热的研究方向。在很多前沿领域,深度学习的出现和发展正在颠覆人类对于传统计算机技术的认知。
编辑 | abby
官网 | www.datayuan.cn
微信公众号ID | datayuancn
在最近的几年里,深度学习无疑是一个发展最快的机器学习子领域。在许多机器学习竞赛中,最后胜出的系统或多或少都使用了深度学习技术。 2016年,基于深度学习、强化学习和蒙特卡洛树搜索的围棋程序 AlphaGo 甚至战胜了人类冠军。人工智能的这一胜利比预想的要早了 10 年,而其中起关键作用的就是深度学习。
深度学习已经广泛应用于我们的生活中,比如市场上可以见到的语音转写、智能音箱、语言翻译、图像识别和图像艺术化系统等,其中深度学习都是关键技术。同时,由于学术界和工业界的大量投入,深度学习的新模型和新算法层出不穷,要充分掌握深度学习的各种模型和算法并实现它们无疑是一件困难的事情。
幸运的是,基于各行各业对深度学习技术的需求,许多公司和学校开源了深度学习工具包,其中大家比较熟悉的有 CNTK、TensorFlow、 Theano、Caffe、mxNet 和Torch。这些工具包都提供了非常灵活而强大的建模能力,极大地降低了使用深度学习技术的门槛,进一步加速了深度学习技术的研究和应用。但是,这些工具包各有所长、接口不同,而且对于很多初学者这些工具包过于灵活,难以掌握。
由于这些原因,Keras 应运而生。Keras 可以被看作一个更易于使用、在更高层次上进行抽象、兼具兼容性和灵活性的深度学习框架,它的底层可以在CNTK、TensorFlow和Theano 中自由切换。 Keras 的出现使很多初学者可以很快地体验深度学习的一些基本技术和模型,并且将这些技术和模型应用到实际问题中。
而《Keras快速上手:基于Python的深度学习实战》这本书就是在这种背景下产生的。
《Keras快速上手:基于Python的深度学习实战》从如何准备深度学习的环境开始,手把手地教读者如何采集数据,如何运用一些最常用,也是目前被认为最有效的一些深度学习算法来解决实际问题。覆盖的领域包括推荐系统、图像识别、自然语言情感分析、文字生成、时间序列、智能物联网等。
本书以实际应用为导向,强调概念的认知和实用性,对理论的介绍深入浅出,对读者的数学水平要求较低,读者在学习完毕后能使用案例程序举一反三地应用到其具体场景中。
从内容方面本书共分为10个章节:
第1章:介绍搭建深度学习环境,是整本书的基础。
第2章:介绍如何用网络爬虫技术收集数据并使用ElasticSearch 存储数据。因为在很多应用中,数据需要读者自行从网上爬取和并加以处理和存储。
第3章:介绍深度学习模型的基本概念。
第4章:介绍深度学习框架 Keras 的用法。
第 5~9 章:是5个深度学习的经典应用。我们会依次介绍深度学习在推荐系统、图像识别、自然语言处理、文字生成和时间序列的具体应用。在介绍这些应用的过程中会穿插各种深度学习模型和代码,并和读者分享我们对于这些模型的原理和应用场景的体会。
第10章:抛砖引玉地提出物联网概念。
作者介绍
谢梁
现任微软云计算核心存储部门首席数据科学家,主持运用机器学习和人工智能方法优化大规模高可用性并行存储系统的运行效率和改进其运维方式。具有十余年机器学习应用经验,熟悉各种业务场景下机器学习和数据挖掘产品的需求分析、架构设计、算法开发和集成部署,涉及金融、能源和高科技等领域。曾经担任美国道琼斯工业平均指数唯一保险业成分股的旅行家保险公司分析部门总监,负责运用现代统计学习方法优化精算定价业务和保险运营管理,推动精准个性化定价解决方案。
鲁颖
现任谷歌硅谷总部数据科学家,为谷歌应用商城提供核心数据决策分析,利用机器学习和深度学习技术建立用户行为预测模型,为产品优化提供核心数据支持。曾在亚马逊、微软和迪士尼美国总部担任机器学习研究科学家,有着多年使用机器学习和深度学习算法研发为业务提供解决方案的经验。
劳虹岚
现任微软研究院研究工程师,是早期智能硬件项目上视觉和语音研发的核心团队成员,对企业用户和消费者需求体验与AI技术的结合有深刻的理解和丰富的经验。曾在Azure和Office 365负责处理大流量高并发的后台云端研究和开发,精通一系列系统架构设计和性能优化方面的解决方案。
购买链接:https://item.jd.com/12134119.html
本书由 数据猿联合电子工业出版社 共同推荐
【本栏目合作伙伴】:清华大学出版社、电子工业出版社、北京师范大学出版社、中国人民大学出版社、中信出版社、上海交通大学出版社。
更多“每周一本书”,可加作者Abby微信:wmh4178(请注明姓名、公司)交流
相关阅读:
来源:数据猿