CVPR 2022 论文分方向整理会持续在极市社区进行更新,目前已经更新了
65篇,项目地址:
https://bbs.cvmart.net/articles/6124
以下是今日更新的 CVPR 2022 论文,包括的研究方向有:
风格迁移、医学影像、图像去模糊、图像生成/合成、3D目标检测、深度估计、超分辨率、车道线检测、人脸反欺诈、半监督学习和图像重建。
风格迁移
[1] CLIPstyler: Image Style Transfer with a Single Text Condition(具有单一文本条件的图像风格迁移)
关键词:Style Transfer, Text-guided synthesis, Language-Image Pre-Training (CLIP)
论文:
https://arxiv.org/abs/2112.00374
医学影像
[2] Temporal Context Matters: Enhancing Single Image Prediction with Disease Progression Representations(时间上下文很重要:使用疾病进展表示增强单图像预测)
关键词:Self-supervised Transformer, Temporal modeling of disease progression
论文:
https://arxiv.org/abs/2203.01933
图像去模糊
[3] E-CIR: Event-Enhanced Continuous Intensity Recovery(事件增强的连续强度恢复)
论文:
https://arxiv.org/abs/2203.01935
代码:
https://github.com/chensong1995/E-CIR
图像生成/图像合成
[4] 3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch Feature Swapping for Bodies and Faces(基于小批量特征交换的三维形状变化自动编码器潜在解纠缠
论文:
https://arxiv.org/abs/2111.12448
代码:
https://github.com/simofoti/3DVAE-SwapDisentangled
[5] Interactive Image Synthesis with Panoptic Layout Generation(具有全景布局生成的交互式图像合成)
论文:
https://arxiv.org/abs/2203.02104
[6] Polarity Sampling: Quality and Diversity Control of Pre-Trained Generative Networks via Singular Values(极性采样:通过奇异值对预训练生成网络的质量和多样性控制)
论文:
https://arxiv.org/abs/2203.01993
demo:
http://bit.ly/polarity-demo-colab
[7] Autoregressive Image Generation using Residual Quantization(使用残差量化的自回归图像生成
论文:
https://arxiv.org/abs/2203.01941
代码:
https://github.com/kakaobrain/rq-vae-transformer
3D目标检测
[8] A Versatile Multi-View Framework for LiDAR-based 3D Object Detection with Guidance from Panoptic Segmentation(在全景分割的指导下,用于基于 LiDAR 的 3D 对象检测的多功能多视图框架
关键词:3D Object Detection with Point-based Methods, 3D Object Detection with Grid-based Methods, Cluster-free 3D Panoptic Segmentation, CenterPoint 3D Object Detection
论文:
https://arxiv.org/abs/2203.02133
[9] Pseudo-Stereo for Monocular 3D Object Detection in Autonomous Driving(自动驾驶中用于单目 3D 目标检测的伪立体)
关键词:Autonomous Driving, Monocular 3D Object Detection
论文:
https://arxiv.org/abs/2203.02112
代码:
https://github.com/revisitq/Pseudo-Stereo-3D
深度估计
[10] ITSA: An Information-Theoretic Approach to Automatic Shortcut Avoidance and Domain Generalization in Stereo Matching Networks(立体匹配网络中自动避免捷径和域泛化的信息论方法)
关键词:Learning-based Stereo Matching Networks, Single Domain Generalization, Shortcut Learning
论文:
https://arxiv.org/abs/2201.02263
[11] ACVNet: Attention Concatenation Volume for Accurate and Efficient Stereo Matching(用于精确和高效立体匹配的注意力连接体积)
关键词:Stereo Matching, cost volume construction, cost aggregation
论文:
https://arxiv.org/abs/2203.02146
代码:
https://github.com/gangweiX/ACVNet
超分辨率
[12] HDNet: High-resolution Dual-domain Learning for Spectral Compressive Imaging(光谱压缩成像的高分辨率双域学习)
关键词:HSI Reconstruction, Self-Attention Mechanism, Image Frequency Spectrum Analysis
论文:
https://arxiv.org/abs/2203.02149
车道线检测
[13] Rethinking Efficient Lane Detection via Curve Modeling(通过曲线建模重新思考高效车道检测)
关键词:Segmentation-based Lane Detection, Point Detection-based Lane Detection, Curve-based Lane Detection, autonomous driving
论文:
https://arxiv.org/abs/2203.02431
代码:
https://github.com/voldemortX/pytorch-auto-drive
人脸反欺诈
[14] Voice-Face Homogeneity Tells Deepfake
论文:
https://arxiv.org/abs/2203.02195
代码:
https://github.com/xaCheng1996/VFD
半监督学习
[15] Class-Aware Contrastive Semi-Supervised Learning(类感知对比半监督学习
关键词:Semi-Supervised Learning, Self-Supervised Learning, Real-World Unlabeled Data Learning
论文:
https://arxiv.org/abs/2203.02261
图像重建
[16] Event-based Video Reconstruction via Potential-assisted Spiking Neural Network(通过电位辅助尖峰神经网络进行基于事件的视频重建)
论文:
https://arxiv.org/abs/2201.10943
暂无分类
[17] Do Explanations Explain? Model Knows Best
论文:
https://arxiv.org/abs/2203.02269
公众号后台回复“数据集”获取60+深度学习数据集下载~
备注:姓名-学校/公司-研究方向-城市(如:小极-北大-目标检测-深圳)
即可申请加入极市目标检测/图像分割/工业检测/人脸/医学影像/3D/SLAM/自动驾驶/超分辨率/姿态估计/ReID/GAN/图像增强/OCR/视频理解等技术交流群
每月大咖直播分享、真实项目需求对接、求职内推、算法竞赛、干货资讯汇总、与 10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企视觉开发者互动交流~
觉得有用麻烦给个在看啦~