【WWW2021】自监督学习上下文嵌入的异构网络链接预测

2021 年 2 月 11 日 专知


异构网络的表示学习方法为每个节点产生一个低维向量嵌入,通常在所有涉及节点的任务中都是固定的。许多现有的方法关注于以一种与下游应用程序无关的方式获取节点的静态向量表示。然而,在实践中,下游任务(如链接预测)需要特定的上下文信息,这些信息可以从与节点相关的子图中提取出来,作为任务的输入。为了解决这一挑战,我们提出了SLiCE,这是一个使用整个图的全局信息和局部注意驱动机制来学习上下文节点表示的静态表示学习方法的框架。我们首先通过引入高阶语义关联和屏蔽节点以自监督的方式预训练我们的模型,然后针对特定的链接预测任务微调我们的模型。我们不再通过聚合所有通过元路径连接的语义邻居的信息来训练节点表示,而是自动学习不同元路径的组合,这些元路径表征了特定任务的上下文,而不需要任何预先定义的元路径。SLiCE在几个公开可用的基准网络数据集上显著优于静态和上下文嵌入学习方法。通过广泛的评价,我们也证明了上下文学习的可解释性、有效性和SLiCE的可扩展性。


https://people.cs.vt.edu/~reddy/papers/WWW21.pdf



专知便捷查看

便捷下载,请关注专知公众号(点击上方蓝色专知关注)

  • 后台回复“SLICE” 可以获取《【WWW2021】自监督学习上下文嵌入的异构网络链接预测》专知下载链接索引

专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取5000+AI主题干货知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程资料和与专家交流咨询
点击“ 阅读原文 ”,了解使用 专知 ,查看获取5000+AI主题知识资源
登录查看更多
1

相关内容

在计算机网络中,异构网络是一种连接计算机和其他设备的网络,其中操作系统和协议有显著差异。例如,将基于微软Windows和Linux的个人计算机与苹果Macintosh计算机连接起来的局域网(LANs)是异构的。异构网络也被用于使用不同接入技术的无线网络中。例如,通过无线局域网提供服务并在切换到蜂窝网络时能够维持服务的无线网络称为无线异构网络。
专知会员服务
39+阅读 · 2021年4月5日
【WWW2021】双曲图卷积网络的协同过滤
专知会员服务
39+阅读 · 2021年3月26日
【WWW2021】场矩阵分解机推荐系统
专知会员服务
31+阅读 · 2021年2月27日
【WWW2021】充分利用层级结构进行自监督分类法扩展
专知会员服务
15+阅读 · 2021年2月7日
AAAI2021 | 学习预训练图神经网络
专知会员服务
115+阅读 · 2021年1月28日
专知会员服务
25+阅读 · 2020年12月17日
专知会员服务
43+阅读 · 2020年12月13日
【KDD2020】复杂异构网络中的高阶聚类
专知
8+阅读 · 2020年8月27日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【KDD2020】图神经网络生成式预训练
专知
22+阅读 · 2020年7月3日
【ICML2020】对比多视角表示学习
专知
19+阅读 · 2020年6月28日
最新《动态网络嵌入》综述论文,25页pdf
专知
34+阅读 · 2020年6月17日
Arxiv
29+阅读 · 2020年3月16日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
Arxiv
14+阅读 · 2019年11月26日
Heterogeneous Deep Graph Infomax
Arxiv
12+阅读 · 2019年11月19日
Arxiv
5+阅读 · 2017年4月12日
VIP会员
相关VIP内容
专知会员服务
39+阅读 · 2021年4月5日
【WWW2021】双曲图卷积网络的协同过滤
专知会员服务
39+阅读 · 2021年3月26日
【WWW2021】场矩阵分解机推荐系统
专知会员服务
31+阅读 · 2021年2月27日
【WWW2021】充分利用层级结构进行自监督分类法扩展
专知会员服务
15+阅读 · 2021年2月7日
AAAI2021 | 学习预训练图神经网络
专知会员服务
115+阅读 · 2021年1月28日
专知会员服务
25+阅读 · 2020年12月17日
专知会员服务
43+阅读 · 2020年12月13日
相关论文
Arxiv
29+阅读 · 2020年3月16日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
Arxiv
14+阅读 · 2019年11月26日
Heterogeneous Deep Graph Infomax
Arxiv
12+阅读 · 2019年11月19日
Arxiv
5+阅读 · 2017年4月12日
Top
微信扫码咨询专知VIP会员