摘要(Summarization)是传统的自然语言处理任务之一[1],多年以来,一直被广大研究者持续挖掘推进,该任务旨在将输入数据转换为包含关键信息的简短概述。在早些年,该方向一直以DUC,CNNDM,Gigaword等数据集为核心进行研究[2],并取得了显著的进展。为了满足各种需求,近些年,跨语言摘要[3],多模态摘要[4],无监督摘要[5],摘要事实性研究[6],对话摘要[7],科学文献摘要[8],基于预训练的摘要[9],摘要任务分析[10]等方向喷薄发展,百花齐放,论文数量持续增多,除了各大会议(例如ACL,EMNLP)中的摘要相关论文之外,arXiv也会涌现出众多摘要相关论文。
受yizhen20133868/NLP-Conferences-Code[11],teacherpeterpan/Question-Generation-Paper-List[12],thunlp/PLMpapers[13],thu-coai/PaperForONLG[14],NiuTrans/ABigSurvey[15]等项目的激励,旨在整理现有摘要研究成果,追踪最新摘要论文,中心文本生成组博士生冯夏冲收集并整理了摘要论文阅读列表,该列表每条信息包括论文题目,作者,PDF链接,论文来源,是否有实现代码,可以帮助研究者快速整合该方向核心资料,并会长期维护和迭代整理现有论文列表。
除论文信息之外,该仓库还包括了文本生成组摘要论文笔记与讲解PPT,可以帮助初学者快速了解与入门该任务。
项目地址:
https://github.com/xcfcode/Summarization-Papers
参考资料
Paice C D. Constructing literature abstracts by computer: Techniques and prospects[J]. Inf. Process. Manag, 1990, 26(1): 171-186.
[2]Gambhir M, Gupta V. Recent automatic text summarization techniques: a survey[J]. Artificial Intelligence Review, 2017, 47(1): 1-66.
[3]Cao Y, Liu H, Wan X. Jointly Learning to Align and Summarize for Neural Cross-Lingual Summarization[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. 2020: 6220-6231.
[4]Li M, Chen X, Gao S, et al. VMSMO: Learning to Generate Multimodal Summary for Video-based News Articles[J]. arXiv preprint arXiv:2010.05406, 2020.
[5]Kohita R, Wachi A, Zhao Y, et al. Q-learning with Language Model for Edit-based Unsupervised Summarization[J]. arXiv preprint arXiv:2010.04379, 2020.
[6]Dong Y, Wang S, Gan Z, et al. Multi-Fact Correction in Abstractive Text Summarization[J]. arXiv preprint arXiv:2010.02443, 2020.
[7]Feng X, Feng X, Qin B, et al. Incorporating Commonsense Knowledge into Abstractive Dialogue Summarization via Heterogeneous Graph Networks[J]. arXiv preprint arXiv:2010.10044, 2020.
[8]Subramanian S, Li R, Pilault J, et al. On extractive and abstractive neural document summarization with transformer language models[J]. arXiv preprint arXiv:1909.03186, 2019.
[9]Bi B, Li C, Wu C, et al. PALM: Pre-training an Autoencoding&Autoregressive Language Model for Context-conditioned Generation[J]. arXiv preprint arXiv:2004.07159, 2020.
[10]Bhandari M, Gour P, Ashfaq A, et al. Re-evaluating Evaluation in Text Summarization[J]. arXiv preprint arXiv:2010.07100, 2020.
[11]https://github.com/yizhen20133868/NLP-Conferences-Code
[12]https://github.com/teacherpeterpan/Question-Generation-Paper-List
[13]https://github.com/thunlp/PLMpapers
[14]https://github.com/thu-coai/PaperForONLG
[15]https://github.com/NiuTrans
由于微信平台算法改版,公号内容将不再以时间排序展示,如果大家想第一时间看到我们的推送,强烈建议星标我们和给我们多点点【在看】。星标具体步骤为:
(1)点击页面最上方"AINLP",进入公众号主页。
(2)点击右上角的小点点,在弹出页面点击“设为星标”,就可以啦。
感谢支持,比心。
推荐阅读
征稿启示| 200元稿费+5000DBC(价值20个小时GPU算力)
完结撒花!李宏毅老师深度学习与人类语言处理课程视频及课件(附下载)
模型压缩实践系列之——bert-of-theseus,一个非常亲民的bert压缩方法
文本自动摘要任务的“不完全”心得总结番外篇——submodular函数优化
斯坦福大学NLP组Python深度学习自然语言处理工具Stanza试用
关于AINLP
AINLP 是一个有趣有AI的自然语言处理社区,专注于 AI、NLP、机器学习、深度学习、推荐算法等相关技术的分享,主题包括文本摘要、智能问答、聊天机器人、机器翻译、自动生成、知识图谱、预训练模型、推荐系统、计算广告、招聘信息、求职经验分享等,欢迎关注!加技术交流群请添加AINLPer(id:ainlper),备注工作/研究方向+加群目的。
阅读至此了,分享、点赞、在看三选一吧🙏