成为VIP会员查看完整内容
VIP会员码认证
首页
主题
发现
会员
服务
注册
·
登录
0
帮林志颖修脸的3D重建,用两块A100加二维CNN就可以实现!
2022 年 9 月 26 日
新智元
新智元报道
编辑:武穆
【新智元导读】
不用
三维构图的三维重建,速度能到每帧73ms。
三维重建(3D Reconstruction)技术一直是计算机图形学和计算机视觉领域的一个重点研究领域。
简单说,三维重建就是基于二维图像,恢复三维场景结构。
据说,林志颖出车祸后,他的面部重建方案就用到了三维重建。
三维重建的不同技术路线,有望融合
其实,三维重建技术已在游戏、电影、测绘、定位、导航、自动驾驶、VR/AR、工业制造以及消费品领域等方面得到了广泛的应用。
随着GPU和分布式计算的发展,以及硬件上,微软的Kinect,华硕的XTion以及因特尔的RealSense等深度相机逐渐成熟,三维重建的成本已经呈现降低的趋势。
从操作上讲,3D重建的过程,大体可以分为五步。
第一步,图像获取。
由于三维重建是照相机的逆操作,因而需要先要用摄像机获取三维物体的二维图像。
这一步不容忽视,因为光照条件、相机的几何特性等对后续的图像处理造成很大的影响。
第二步,摄像机标定。
这一步,是利用摄像机所拍摄到的图像来还原空间中的物体。
通常会假设,摄像机所拍摄到的图像与三维空间中的物体之间存在线性关系,求解线性关系的参数的这个过程,就称为摄像机标定。
第三步,特征提取。
特征主要包括特征点、特征线和区域。
大多数情况下,都是以特征点为匹配基元,特征点以何种形式提取与用何种匹配策略紧密联系。
因此在进行特征点的提取时需要先确定用哪种匹配方法。
第四步,立体匹配。
立体匹配是指根据所提取的特征来建立图像对之间的一种对应关系,也就是将同一物理空间点在两幅不同图像中的成像点进行一一对应起来。
第五步,三维重建。
有了比较精确的匹配结果,结合摄像机标定的内外参数,就可以恢复出三维场景信息。
这五步,环环相扣,只有每个环节的都做得精度高,误差小,才能设计出一个比较精确的立体视觉系统。
在算法上,三维重建大体可分为两类,一个是基于传统多视图几何的三维重建算法。
另一个是基于深度学习的三维重建算法。
目前,由于CNN在图像的特征匹配上有着巨大优势,越来越多的研究人员,开始将目光转向基于深度学习的三维重建。
不过,这种方法多是监督学习方法,对数据集依赖程度很高。
而数据集的收集和标注一直是监督学习的问题来源,因而,基于深度学习的三维重建,多在体积较小的物体重建方向上研究较多。
另外,基于深度学习的三维重建固然保真度高,在精度方面有较好的性能。
但训练模型要花费大量的时间,且用于三维重建的3D卷积层是非常昂贵的。
因而,有研究人员开始重新审视传统的三维重建方法。
传统的三维重建方法固然性能上有不足,但技术相对成熟。
那么,将两种方法进行一定的融合,也许会有更好的结果。
不用3D卷积层,也能3D重建
来自伦敦大学、牛津大学、谷歌和Niantic(从谷歌拆分出来的研究AR的独角兽公司)等机构的研究人员,探索出一条不用3D卷积的3D重建方法。
他们提出了一个简单的最先进的多视图深度估计器。
该多视图深度估计器有两点突破。
一是精心设计的二维CNN,可以利用强大的图像先验,以及并可以得到平面扫描特征量和几何损失;
二是能将关键帧和几何元数据整合到成本量中,从而实现知情的深度平面计分。
据研究人员介绍,他们的方法在深度估计方面比目前最先进的方法有明显的领先优势。
并且在ScanNet和7-Scenes上进行3D重建时接近或更好,但仍然允许在线实时低内存重建。
而且,重建速度非常快,每帧仅用约73ms。
研究人员认为,这使得通过快速深度融合进行精确重建成为可能。
据研究人员介绍,他们的方法是用图像编码器从参考图像和源图像中提取匹配特征,然后输入到cost volume,再使用2D卷积编码/解码器网络处理cost volume的输出结果。
该研究使用PyTorch来实现,并用ResNet18进行匹配特征提取,还使用两块40GB A100 GPU ,经过36小时完成全部工作。
此外,虽然模型不使用3D卷积层,但在深度预测指标上却优于基线模型。
这表明精心设计和训练的2D网络足以进行高质量的深度估计。
感兴趣的读者,可以阅读论文原文:
https://nianticlabs.github.io/simplerecon/resources/SimpleRecon.pdf
不过,需要提醒的是,阅读这篇论文有专业门槛,有些细节可能不容易会注意到。
我们不妨看看外国网友从这篇论文中发现了什么。
一位网名为「stickshiftplease」网友说,「虽然A100上的推理时间约为70毫秒,但这可以通过各种技巧来缩短,并且内存要求不必为40GB,最小的模型运行2.6GB的内存」。
另一个名为「IrreverentHippie」的网友则指出,「请注意,这项研究依然是基于LiDAR的深度传感器进行采样。这就是这种方法获得如此好的质量和准确性的原因」。
还有一个名为「nickthorpie」的网友的评论比较长,他说,「ToF相机的优缺点有据可查。ToF解决了困扰原始图像处理的各种问题。其中,两个主要问题是可扩展性和细节。ToF总是难以识别诸如桌子边缘或细杆之类的小细节。这对于自主或半自主应用程序至关重要。
此外,由于ToF是一种有源传感器,因此当多个传感器一起使用时,例如在拥挤的十字路口或自建仓库中,图片质量会迅速下降。
显然,你在一个场景中收集的数据越多,你所创造的描述就越准确。许多研究人员更喜欢研究原始图像数据,因为它更灵活」。
参考资料:
https://www.reddit.com/r/MachineLearning/comments/xbj6cn/r_simplerecon_3d_reconstruction_without_3d/
https://nianticlabs.github.io/simplerecon/resources/SimpleRecon.pdf
登录查看更多
点赞并收藏
0
暂时没有读者
0
权益说明
本文档仅做收录索引使用,若发现您的权益受到侵害,请立即联系客服(微信: zhuanzhi02,邮箱:bd@zhuanzhi.ai),我们会尽快为您处理
相关内容
重建
关注
0
【干货书】深度学习目标检测:原理与应用,276页pdf
专知会员服务
98+阅读 · 2022年9月24日
「深度学习3D点云处理」最新2022进展综述
专知会员服务
57+阅读 · 2022年9月4日
《3D计算机视觉》!从点云到NeRF,多伦多大学CSC 2547课程全面讲解
专知会员服务
68+阅读 · 2022年8月1日
深度学习视频超分辨率技术概述
专知会员服务
36+阅读 · 2022年7月18日
CVPR 2021 Oral | 室内动态场景中的相机重定位
专知会员服务
15+阅读 · 2021年4月12日
【CVPR2021】LiDAR R-CNN:一种快速、通用的二阶段3D检测器
专知会员服务
15+阅读 · 2021年4月3日
基于深度学习的点云语义分割研究综述
专知会员服务
69+阅读 · 2021年1月16日
三维人脸识别研究进展综述,12页pdf
专知会员服务
28+阅读 · 2020年12月16日
【牛津大学BoYang博士论文】学习重建和分割三维物体,143页pdf
专知会员服务
64+阅读 · 2020年11月9日
【ECCV2020-旷视】利用边界特征做检测的BorderDet
专知会员服务
12+阅读 · 2020年9月19日
ECCV 2022 | 通往数据高效的Transformer目标检测器
PaperWeekly
0+阅读 · 2022年7月29日
从1小时到3.5分钟,Meta新算法一部手机搞定3D人脸数据采集,可用于VR的那种
量子位
0+阅读 · 2022年7月6日
浅谈单图像三维重建算法
极市平台
3+阅读 · 2022年6月25日
MIT、哈佛新研究:提速15000倍,借助光场实现3D场景超高速渲染
机器之心
0+阅读 · 2021年12月14日
最全综述:基于深度学习的三维重建算法
极市平台
12+阅读 · 2020年3月17日
计算机视觉方向简介 | 视觉惯性里程计(VIO)
计算机视觉life
64+阅读 · 2019年6月16日
计算机视觉方向简介 | 基于单目视觉的三维重建算法
计算机视觉life
30+阅读 · 2019年4月9日
【泡泡图灵智库】基于CPU的实时6D物体姿态估计(arXiv)
泡泡机器人SLAM
12+阅读 · 2019年1月26日
计算机视觉方向简介 | 深度相机室内实时稠密三维重建
计算机视觉life
17+阅读 · 2018年5月23日
深度学习目标检测概览
AI研习社
46+阅读 · 2017年10月13日
基于随机相位调制的自然场景压缩成像方法与实现研究
国家自然科学基金
0+阅读 · 2015年12月31日
GPU加速和风格感知的艺术图像和谐克隆
国家自然科学基金
4+阅读 · 2014年12月31日
多分辨率相机及图像超分辨率技术研究
国家自然科学基金
2+阅读 · 2014年12月31日
年龄自适应人脸识别算法研究
国家自然科学基金
0+阅读 · 2013年12月31日
基于全投影域的医学图像多分辨率非刚性配准方法研究
国家自然科学基金
0+阅读 · 2012年12月31日
基于三维视觉及形状匹配的全自由度自然手势识别
国家自然科学基金
0+阅读 · 2012年12月31日
基于二维和三维数据融合的室内物体识别方法研究
国家自然科学基金
0+阅读 · 2012年12月31日
面向时间不耐受患者的脑MRI图像超分辨率算法研究
国家自然科学基金
0+阅读 · 2012年12月31日
可见光与红外线双模式视频融合的人体检测技术研究
国家自然科学基金
0+阅读 · 2010年12月31日
基于边缘点的折反射图像立体匹配与三维重建研究
国家自然科学基金
0+阅读 · 2009年12月31日
Variance change point detection with credible sets
Arxiv
0+阅读 · 2022年11月25日
Spatial-Temporal Attention Network for Open-Set Fine-Grained Image Recognition
Arxiv
0+阅读 · 2022年11月25日
Learning Detailed Radiance Manifolds for High-Fidelity and 3D-Consistent Portrait Synthesis from Monocular Image
Arxiv
0+阅读 · 2022年11月25日
Melding Wildlife Surveys to Improve Conservation Inference
Arxiv
0+阅读 · 2022年11月23日
Deep Neural Mel-Subband Beamformer for In-car Speech Separation
Arxiv
0+阅读 · 2022年11月22日
EDTER: Edge Detection with Transformer
Arxiv
11+阅读 · 2022年3月16日
Exploiting Fine-grained Face Forgery Clues via Progressive Enhancement Learning
Arxiv
12+阅读 · 2021年12月28日
SVT-Net: Super Light-Weight Sparse Voxel Transformer for Large Scale Place Recognition
Arxiv
12+阅读 · 2021年5月30日
Text Detection and Recognition in the Wild: A Review
Arxiv
20+阅读 · 2020年6月8日
3D Hand Shape and Pose Estimation from a Single RGB Image
Arxiv
17+阅读 · 2019年3月3日
VIP会员
自助开通(推荐)
客服开通
详情
相关主题
重建
三维重建
3D重建
3D
摄像机标定
特征点
相关VIP内容
【干货书】深度学习目标检测:原理与应用,276页pdf
专知会员服务
98+阅读 · 2022年9月24日
「深度学习3D点云处理」最新2022进展综述
专知会员服务
57+阅读 · 2022年9月4日
《3D计算机视觉》!从点云到NeRF,多伦多大学CSC 2547课程全面讲解
专知会员服务
68+阅读 · 2022年8月1日
深度学习视频超分辨率技术概述
专知会员服务
36+阅读 · 2022年7月18日
CVPR 2021 Oral | 室内动态场景中的相机重定位
专知会员服务
15+阅读 · 2021年4月12日
【CVPR2021】LiDAR R-CNN:一种快速、通用的二阶段3D检测器
专知会员服务
15+阅读 · 2021年4月3日
基于深度学习的点云语义分割研究综述
专知会员服务
69+阅读 · 2021年1月16日
三维人脸识别研究进展综述,12页pdf
专知会员服务
28+阅读 · 2020年12月16日
【牛津大学BoYang博士论文】学习重建和分割三维物体,143页pdf
专知会员服务
64+阅读 · 2020年11月9日
【ECCV2020-旷视】利用边界特征做检测的BorderDet
专知会员服务
12+阅读 · 2020年9月19日
热门VIP内容
开通专知VIP会员 享更多权益服务
基于对抗博弈下的导弹部队机动路径规划研究
组织战略匹配管理中的语义建模方法研究综述
战争无人机蜂群:自主战争的未来
图检索增强生成研究进展
相关资讯
ECCV 2022 | 通往数据高效的Transformer目标检测器
PaperWeekly
0+阅读 · 2022年7月29日
从1小时到3.5分钟,Meta新算法一部手机搞定3D人脸数据采集,可用于VR的那种
量子位
0+阅读 · 2022年7月6日
浅谈单图像三维重建算法
极市平台
3+阅读 · 2022年6月25日
MIT、哈佛新研究:提速15000倍,借助光场实现3D场景超高速渲染
机器之心
0+阅读 · 2021年12月14日
最全综述:基于深度学习的三维重建算法
极市平台
12+阅读 · 2020年3月17日
计算机视觉方向简介 | 视觉惯性里程计(VIO)
计算机视觉life
64+阅读 · 2019年6月16日
计算机视觉方向简介 | 基于单目视觉的三维重建算法
计算机视觉life
30+阅读 · 2019年4月9日
【泡泡图灵智库】基于CPU的实时6D物体姿态估计(arXiv)
泡泡机器人SLAM
12+阅读 · 2019年1月26日
计算机视觉方向简介 | 深度相机室内实时稠密三维重建
计算机视觉life
17+阅读 · 2018年5月23日
深度学习目标检测概览
AI研习社
46+阅读 · 2017年10月13日
相关基金
基于随机相位调制的自然场景压缩成像方法与实现研究
国家自然科学基金
0+阅读 · 2015年12月31日
GPU加速和风格感知的艺术图像和谐克隆
国家自然科学基金
4+阅读 · 2014年12月31日
多分辨率相机及图像超分辨率技术研究
国家自然科学基金
2+阅读 · 2014年12月31日
年龄自适应人脸识别算法研究
国家自然科学基金
0+阅读 · 2013年12月31日
基于全投影域的医学图像多分辨率非刚性配准方法研究
国家自然科学基金
0+阅读 · 2012年12月31日
基于三维视觉及形状匹配的全自由度自然手势识别
国家自然科学基金
0+阅读 · 2012年12月31日
基于二维和三维数据融合的室内物体识别方法研究
国家自然科学基金
0+阅读 · 2012年12月31日
面向时间不耐受患者的脑MRI图像超分辨率算法研究
国家自然科学基金
0+阅读 · 2012年12月31日
可见光与红外线双模式视频融合的人体检测技术研究
国家自然科学基金
0+阅读 · 2010年12月31日
基于边缘点的折反射图像立体匹配与三维重建研究
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
Variance change point detection with credible sets
Arxiv
0+阅读 · 2022年11月25日
Spatial-Temporal Attention Network for Open-Set Fine-Grained Image Recognition
Arxiv
0+阅读 · 2022年11月25日
Learning Detailed Radiance Manifolds for High-Fidelity and 3D-Consistent Portrait Synthesis from Monocular Image
Arxiv
0+阅读 · 2022年11月25日
Melding Wildlife Surveys to Improve Conservation Inference
Arxiv
0+阅读 · 2022年11月23日
Deep Neural Mel-Subband Beamformer for In-car Speech Separation
Arxiv
0+阅读 · 2022年11月22日
EDTER: Edge Detection with Transformer
Arxiv
11+阅读 · 2022年3月16日
Exploiting Fine-grained Face Forgery Clues via Progressive Enhancement Learning
Arxiv
12+阅读 · 2021年12月28日
SVT-Net: Super Light-Weight Sparse Voxel Transformer for Large Scale Place Recognition
Arxiv
12+阅读 · 2021年5月30日
Text Detection and Recognition in the Wild: A Review
Arxiv
20+阅读 · 2020年6月8日
3D Hand Shape and Pose Estimation from a Single RGB Image
Arxiv
17+阅读 · 2019年3月3日
大家都在搜
palantir
壁画
武器目标分配
兵棋推演
AI智能
PRML
大模型
MoE
笛卡尔
EBSD晶体学织构基础及数据处理
Top
提示
微信扫码
咨询专知VIP会员与技术项目合作
(加微信请备注: "专知")
微信扫码咨询专知VIP会员
Top