图神经网络(graph neural network,GNN)是处理图结构数据的强大工具,能够捕捉节点间的复杂关系和特征. 但GNN的离散架构导致其在表示图结构、建模图演化、适应不规则数据和计算开销等方面面临诸多挑战. 面对这些挑战,神经常微分方程(ordinary differential equation,ODE)由于能够模拟系统状态的连续变化,具备“连续深度”的编码和推断能力,被作为解决GNN面临挑战的全新方法而引入. 然而,神经ODE是为欧式结构数据设计的,无法直接捕捉图结构特性. 因此,提出了图神经ODE,一种将神经ODE与GNN结合的新架构,可以更好地适应图结构数据并充分利用其特性. 近年来,图神经ODE相关研究已经深入到图机器学习的各个方向中,引发了新的研究热潮. 在此背景下,适时地对图神经ODE研究前沿进行了系统性综述. 首先,回顾了GNN的关键优势和面临的诸多挑战,阐述了引入神经ODE并与GNN结合的理论基础和实践意义. 随后,详细介绍了图神经ODE的背景和基本概念,并提出了一种新颖的分类方法,在此基础上对当前的相关方法进行了全面描述. 然后,介绍了相关研究常用的验证方法,包括下游任务及数据集. 进一步,深入探讨了图神经ODE在多个实用领域上的应用. 最后,对图神经ODE面临的挑战和未来发展趋势进行了总结和展望.