由北京大学前沿计算研究中心助理教授董豪博士等编写的深度强化学习专著《深度强化学习:基础、研究与应用(Deep Reinforcement Learning: Foundamentals, Research and Applications)》英文版于2020年6月由 Springer 发行,中文简体、繁体版先后于2021年6月、2022年1月发行,并于2022年2月对中文简体版开放免费下载。
内容摘要
深度强化学习是实现智能决策的关键技术之一,对人工智能、机器人、认知科学、金融、资源调配等重大应用需求和研究方向有重要的意义。深度学习是基于深度神经网络的机器学习方法。深度强化学习是强化学习和深度学习的结合体,随着近几十年来深度学习发展的热潮,计算硬件 GPU、CPU、TPU 等性能快速提升,深度强化学习作为一个新的重要学科分支吸引了越来越多的科研和产业人员的关注。本书从基本强化学习理论,到深度强化学习算法,再到实际应用与实践,给读者带来相对全面且实用的深度强化学习知识,便于读者学习和开展研究工作。
本书分为三大部分,覆盖了学习深度强化学习所需的所有内容。第一部分介绍了强化学习的基础知识、常用的深度强化学习算法及其实现方法。第二部分对精选的深度强化学习研究方向展开介绍,这对希望开展相关研究的读者非常有意义。为了帮助读者更加深入地理解深度强化学习细节并把相关技术应用到实际中,本书第三部分仔细地讲述了大量应用的实现细节,例如机器人学习跑步、机械臂控制、下围棋、多智能体平台等等,并提供相关的开源代码。
本书可以作为在深度强化学习相关领域工作的教师、学生或工程师的阅读材料和参考书。一方面可以帮助读者从零开始学习强化学习,到深入具体的研究方向;另一方面可以帮助读者快速地把深度强化学习技术用于实际项目中。配合本书的开源代码,帮助读者充分利用好 CPU 和 GPU 等计算资源,提升深度强化学习实验结果,加深对研究应用项目的理解,推动整个人智能领域的发展。