一文了解自然语言处理神经史

2018 年 12 月 2 日 云栖社区

摘要:越来越火的NLP到底经历了什么?本文扩展了HermanKamper和我在2018年深度学习Indaba组织的自然语言处理前沿课程。整个课程的幻灯片都可以在这里找到,这篇文章将主要讨论NLP中基于神经网络方法的近期进展。


免责声明:本文尝试将大约15年NLP的发展历程浓缩为今天最相关的八个里程碑,因此遗漏了许多相关和重要的发展。特别是,它严重偏向于当前的神经方法,这可能给人留下此期间没有其他有影响力方法的错误影响。

 

2001年-神经语言模型


语言建模是在给定前面的单词的情况下预测文本中的下一个单词的任务。 它可能是最简单的语言处理任务,具有实际应用,如智能键盘和电子邮件响应建议(Kannan et al.,2016)。语言建模有着丰富的历史。基于n-gram的经典方法采用平滑处理看不见的n-gram(Kneser&Ney,1995)。Bengio等人于2001年提出了第一种神经语言模型,一种前馈神经网络,如下图1所示。



该模型把n个可以在表C中查找的先前单词向量表示作为输入。现在,这种向量被称为词嵌入。这些词嵌入被连接并送入隐藏层,然后将其输出提供给softmax层。想要了解更多该模型的信息,请查看此文章。


最近,前馈神经网络已被用于语言建模的递归神经网络(RNN; Mikolov等人,2010)和长短期记忆网络(LSTM; Graves,2013)所取代。近年来已经提出了许多经典LSTM的新语言扩展模型(请参阅此页面以获得概述)。尽管有这些发展,但经典的LSTM仍然是一个强大的基线(Melis等,2018)。即使Bengio等人的经典前馈神经网络在某些环境中也与更复杂的模型竞争,但这些通常只学会考虑最近的词(Daniluk等,2017)。如何理解这些语言模型捕获的信息是一个活跃的研究领域(Kuncoro等,2018; Blevins等,2018)。


语言建模通常是应用RNN时的首选训练场,并成功捕捉到了想象力,许多人通过Andrej的博客文章开始了解。语言建模是无监督学习的一种形式,Yann LeCun也将预测性学习作为获取常识的先决条件(参见NIPS 2016的Cake幻灯片)。 关于语言建模最显著的方面可能是,尽管它很简单,但它是本文讨论的许多后期进展的核心:


  • 词嵌入:word2vec的目标是简化语言建模;

  • 序列到序列模型:这种模型通过一次预测一个词来生成输出序列;

  • 预训练语言模型:这些方法使用语言模型中的表示来进行迁移学习;


这反过来意味着NLP中许多最重要的最新进展减少为一种语言建模形式。 为了做“真正的”自然语言理解,仅仅从原始形式的文本中学习可能是不够的,我们将需要新的方法和模型。


2008-多任务学习


多任务学习是在多个任务上训练的模型之间共享参数的一般方法。在神经网络中,这可以通过绑定不同层的权重来轻松实现。多任务学习的想法在1993年由Rich Caruana首次提出,并应用于道路跟踪和肺炎预测(Caruana,1998)。直观地说,多任务学习鼓励模型学习对许多任务有用的表示。特别对于学习一般的低级表示,集中模型的注意力或在有限量的训练数据的设置中特别有用。有关多任务学习的更全面概述,请查看此文章。


Collobert和Weston于2008年首次将多任务学习应用于NLP的神经网络。 在他们的模型中,查找表(或词嵌入矩阵)在两个在不同任务上训练的模型之间共享,如下面的图2所示。



共享词嵌入使模型能够在词嵌入矩阵中协作和共享一般的低级信息,这通常构成模型中最大数量的参数。Collobert和Weston在2008年的论文中证明了它在多任务学习中的应用,它引领了诸如预训练词嵌入和使用卷积神经网络(CNN)之类的思想,这些思想仅在过去几年中被广泛采用。它赢得了ICML 2018的时间考验奖(参见此时的时间考验奖论文)。


多任务学习现在用于各种NLP任务,并且利用现有或“人工”任务已成为NLP指令集中的有用工具。有关不同附加任务的概述,请查看此文章。虽然通常预先定义参数的共享,但是在优化过程期间也可以学习不同的共享模式(Ruder等,2017)。随着模型越来越多地在多项任务中被评估来评估其泛化能力,多任务学习越来越重要,最近提出了多任务学习的专用基准(Wang et al,2018; McCann et al,2018)。

 

2013-词嵌入


文本的稀疏向量表示,即所谓的词袋模型,在NLP中具有悠久的历史。正如我们在上面所看到的,早在2001年就已经使用了词或词嵌入的密集向量表示。 Mikolov等人在2013年提出的主要创新,是通过移动隐藏层和近似目标来使这些词嵌入的训练更有效率。虽然这些变化本质上很简单,但它们与高效的word2vec一起实现了大规模的词嵌入训练。


Word2vec有两种模式,可以在下面的图3中看到:连续的词袋(CBOW)和skip-gram。它们的目标不同:一个基于周围的词预测中心词,而另一个则相反。



虽然这些嵌入在概念上与使用前馈神经网络学习的嵌入技术没有什么不同,但是对非常大的语料库的训练使它们能够捕获诸如性别,动词时态和国家–首都关系之类的词之间的某些关系,由图4可知:



这些关系及其背后的意义引发了对嵌入词的初步兴趣,许多研究调查了这些线性关系的起源(Arora等,2016; Mimno&Thompson,2017; Antoniak&Mimno,2018; Wendlandt等,2018))。然而,使用预训练嵌入作为初始化的固定词嵌入,把它作为当前NLP的主要内容被证明可以提高各种下游任务的性能。


虽然捕获的关系word2vec具有直观且几乎神奇的性能,但后来的研究表明word2vec没有任何固有的特殊性:通过矩阵分解也可以学习词嵌入(Pennington等,2014; Levy&Goldberg,2014)和通过适当的调整,经典的矩阵分解方法(如SVD和LSA)可以获得类似的结果(Levy等,2015)。


从那时起,许多工作已经开始探索词嵌入的不同方面,可以通过这篇文章了解一些趋势和未来方向。尽管有许多发展,但word2ve仍然是如今被广泛使用的一种流行的选择。Word2vec的范围甚至超出了词级别:带有负抽样的skip-gram,一个基于本地环境学习嵌入的方便目标,已被应用于学习句子的表示(Mikolov&Le,2014; Kiros et al.,2015)-甚至超越NLP,应用到网络(Grover&Leskovec,2016)和生物序列(Asgari&Mofrad,2015)等。


一个特别令人兴奋的方向是将不同语言的词嵌入投影到同一空间中以实现(零射击)跨语言转移。越来越有可能以完全无监督的方式(至少对于类似语言)学习良好的投影,这开启了低资源语言和无监督机器翻译的应用(Lample等,2018; Artetxe等,2018)。请查看(Ruder等,2018)的概述。

 

2013年-NLP的神经网络


2013年和2014年是神经网络模型开始应用于NLP的标志年份。三种主要类型的神经网络被广泛使用:递归神经网络、卷积神经网络、循环神经网络。


递归神经网络(RNN)是处理NLP中普遍存在的动态输入序列问题的明显选择。 Vanilla RNNs(Elman,1990)很快被经典的长短期记忆网络(Hochreiter&Schmidhuber,1997)所取代,后者证明其对消失和爆炸梯度问题更具弹性。在2013年之前,RNN仍然被认为很难训练,Ilya Sutskever的博士论文是改变这种现状的一个关键例子。LSTM细胞可视化可以在下面的图5中看到。双向LSTM(Graves等,2013)通常用于处理左右上下文。



随着卷积神经网络(CNN)被广泛用于计算机视觉,它们也开始应用于文本(Kalchbrenner等,2014; Kim等,2014)。用于文本的卷积神经网络仅在两个维度上操作,其中滤波器仅需要沿时间维度移动。下面的图6显示了NLP中使用的典型CNN。



卷积神经网络的一个优点是它们比RNN更可并行化,因为每个时间步的状态仅取决于本地环境(通过卷积运算)而不是像RNN取决过去所有状态。CNN可以使用扩张卷积扩展到更宽的感受野,以捕捉更广泛的背景(Kalchbrenner等2016)。 CNN和LSTM也可以组合和堆叠,并且可以使用卷积来加速LSTM。


RNN和CNN都将语言视为一个序列。然而,从语言学的角度来看,语言本质上是等级的:单词被组成高阶短语和子句它们本身可以根据一组生产规则递归地组合。将句子视为树而不是序列的语言启发思想产生了递归神经网络,这可以在下面的图7中看到:



与从左到右或从右到左处理句子的RNN相比,递归神经网络从下到上构建序列的表示。在树的每个节点处,通过组合子节点的表示来计算新表示。由于树也可以被视为在RNN上施加不同的处理顺序,因此LSTM自然地扩展到树。


RNN和LSTM不仅仅可以被扩展来使用分层结构,而且不仅可以根据本地语言学习词嵌入,而且可以基于语法背景来学习词嵌入(Levy&Goldberg,2014);语言模型可以基于句法堆栈生成单词(Dyer et al。,2016); 图形卷积神经网络可以在树上运行(Bastings等,2017)。


2014年-序列到序列模型


2014年,Sutskever等人提出序列到序列学习,一种通过神经网络将一个序列映射到另一个序列的通用框架。在该框架中,编码器神经网络逐个符号地处理句子并将其压缩成矢量表示; 然后,解码器神经网络基于编码器状态逐个符号地预测输出符号,在每个步骤中将先前预测的符号作为输入,如下面的图8所示。



机器翻译成了这个框架的杀手级应用。2016年,谷歌宣布开始用NMT模型替换其基于单片短语的MT模型(Wu et al.,2016)。根据Jeff Dean的说法,这意味着用500线性神经网络模型替换500,000行基于短语的MT代码。


由于其灵活性,该框架现在是自然语言生成任务的首选框架,不同的模型承担编码器和解码器的角色。重要的是,解码器模型不仅可以以序列为条件,而且可以以任意表示为条件。这使得例如基于图像生成标题(Vinyals等人,2015)(如下面的图9中可见),基于表格的文本(Lebret等人,2016),以及基于源代码更改的描述(Loyola等,2017),以及许多其他应用程序。



序列到序列学习甚至可以应用于NLP中常见的结构化预测任务,其中NLP输出具有特定结构。简单地说,输出是线性化的,如下面图10中的consituency解析所示。神经网络已经证明了在给予consituency解析的足够数量的训练数据(Vinyals等,2015)和命名实体识别(Gillick等,2016)等的情况下,能够直接学习产生这种线性化输出的能力。



用于序列和解码器的编码器通常基于RNN,但是也可以使用其他模型类型,最新的架构主要来自作为序列到序列架构的培养皿MT的工作。最近的模型是卷积编码器(Kalchbrenner等,2016; Gehring等,2017),变换器(Vaswani等,2017),将在下一个部分讨论,以及LSTM和变压器的组合(Chen等,2018)。


2015-注意力


注意力(Bahdanau等,2015)NMT)的核心创新之一,也是使NMT模型优于基于经典短语的MT系统的关键思想。序列到序列学习的主要瓶颈是它需要将源序列的整个内容压缩成固定大小的矢量。注意力通过允许解码器回顾源序列隐藏状态来减轻这种情况,然后将其作为加权平均值提供给解码器的附加输入,如下面的图11所示。



注意力有不同的形式(Luong等,2015)在这里查看简要概述。 注意力广泛适用并且可能对任何需要根据输入的某些部分做出决策的任务有用。它已被应用于consituency解析(Vinyals等,2015),阅读理解(Hermann等,2015)和一次性学习(Vinyals等,2016)等。甚至输入不需要是序列,但可以包括其他表示,如图像字幕的情况(Xu et al.,2015),可以在下面的图12中看到。注意力的一个有用的副作用是,通过根据注意力量检查输入的哪些部分与特定输出相关。



注意力也不仅限于查看输入序列;自-注意力可用于查看句子或文档中的周围单词以获得更多上下文敏感的单词表示。多层自-注意力是Transformer架构的核心(Vaswani等,2017),这是目前最先进的NMT模型。

 

2015-基于记忆的网络


注意力可以看作是模糊记忆的一种形式,其中记忆由模型的过去隐藏状态组成,模型选择从记忆中所检索的内容。有关注意事项及其与记忆关联的更详细概述,请查看此文章。许多具有更明确记忆的模型已经被提出,它们有不同的变体,例如神经网络图灵机(Graves et al,2014),记忆网络(Weston et al.,2015)[70]和端到端的记忆网络(Sukhbaatar et al.,2015),动态记忆网络( Kumar等,2015),可微神经计算机(Graves等,2016)和递归实体网络(Henaff等,2017)。


通常基于与当前状态的相似性来访问内存,类似于注意力,并且通常可以写入和读取存储器,模型在实现和利用内存方面有所不同。例如,端到端记忆网络多次处理输入并更新内存以启用多个推理步骤。神经图灵机还具有基于位置的寻址,允许它们学习简单的计算机程序,如排序。基于记忆的模型通常应用于其中保留较长时间跨度信息的有用任务,例如语言建模和阅读理解。存储器的概念非常通用:知识库或表可以用作存储器,而存储器也可以基于整个输入或其特定部分来填充。

 

2018年 - 预训练语言模型


预训练的词嵌入与上下文无关,而且仅用于初始化模型中的第一层。最近几个月,一系列监督任务被用于预训练神经网络(Conneau等,2017; McCann等,2017; Subramanian等,2018)。相比之下,语言模型只需要未标记的文本; 因此,训练可以扩展到数十亿个tokens,新领域和新语言。 2015年首次提出了预训练语言模型(Dai&Le,2015); 直到最近,它们才被证明对各种各样的任务都有益。 语言模型嵌入可以用作目标模型中的特征(Peters等,2018),或者可以对目标任务数据微调语言模型(Ramachandran等,2017; Howard&Ruder,2018)。添加语言模型嵌入比许多任务的最新技术有了很大的改进,如下面的图13所示。



预训练语言模型可以用更少的数据进行学习,由于语言模型仅需要未标记的数据,因此对于标记数据稀缺的低资源语言尤其有用。有关预训练语言模型的更多信息,请参阅本文。

 

其他里程碑


基于字符的表示:在字符上使用CNN或LSTM来获得基于字符的词表示是相当普遍的,特别是对于形态学丰富的语言和形态信息很重要或具有许多未知单词的任务。据我所知,基于字符的表示首先用于序列标记(Lample等,2016; Plank等,2016)。基于字符的表示减少了必须以增加计算成本处理固定词汇表的需要,并且能够实现诸如完全基于字符的NMT之类的应用(Ling等人,2016; Lee等人,2017)。

 

对抗性学习:对抗性方法已经在风暴中占据了ML的领域,并且在NLP中也以不同的形式使用。对抗性示例越来越广泛地被广泛使用,不仅作为探测模型和理解其失败案例的工具,而且还使它们更加具有鲁棒性(Jia&Liang,2017)。对抗性训练:域对抗性损失(Ganin等,2016; Kim等,2017)是可以同样使模型更加健壮的有用的正规化形式。生成对抗网络(GAN)对于自然语言生成来说还不是太有效(Semeniuta等,2018),但是例如在匹配分布时是有用的(Conneau等,2018)。

 

强化学习:强化学习已经被证明对于具有时间依赖性的任务是有用的,例如在训练期间选择数据(Fang等,2017; Wu等,2018)和建模对话(Liu等,2018)。RL对于直接优化诸如ROUGE或BLEU之类的非可微结束度量而不是优化替代损失(例如摘要中的交叉熵(Paulus等,2018; Celikyilmaz等,2018)和机器翻译也是有效的。(Ranzato等人,2016),反向强化学习在犒赏太复杂而无法指定的环境中可能是有用的,例如视觉叙事(Wang et al。,2018)。


本文由阿里云云栖社区组织翻译。

文章原标题《a-review-of-the-recent-history-of-natural-language-processing》

作者:Sebastian Ruder 译者:虎说八道,审校:。



end

Python数据科学“冷门”库

模块化与解耦式开发在蚂蚁金服 mPaaS 深度实践探讨

Python数据可视化的四种简易方法

更多精彩

登录查看更多
11

相关内容

斯坦福大学经典《自然语言处理cs224n》2020课件合集
专知会员服务
95+阅读 · 2020年5月25日
深度学习自然语言处理概述,216页ppt,Jindřich Helcl
专知会员服务
212+阅读 · 2020年4月26日
【教程】自然语言处理中的迁移学习原理,41 页PPT
专知会员服务
95+阅读 · 2020年2月8日
【课程推荐】普林斯顿陈丹琦COS 484: 自然语言处理课程
专知会员服务
82+阅读 · 2019年12月11日
深度学习自然语言处理综述,266篇参考文献
专知会员服务
229+阅读 · 2019年10月12日
NLP领域中的迁移学习现状
AI科技评论
7+阅读 · 2019年9月1日
【赠书】TensorFlow自然语言处理
AINLP
17+阅读 · 2019年7月14日
34篇最新论文带你快速跟进NLP领域技术(附下载)
一文了解自然语言生成演变史!
AI前线
5+阅读 · 2019年5月2日
了解情感分析中的NLP技术么?
七月在线实验室
9+阅读 · 2019年4月12日
基于深度学习的NLP 32页最新进展综述,190篇参考文献
人工智能学家
27+阅读 · 2018年12月4日
自然语言处理NLP快速入门
专知
20+阅读 · 2018年10月8日
Arxiv
13+阅读 · 2020年4月12日
Arxiv
20+阅读 · 2019年9月7日
Arxiv
6+阅读 · 2019年8月22日
Arxiv
18+阅读 · 2019年1月16日
Arxiv
3+阅读 · 2018年12月18日
A Probe into Understanding GAN and VAE models
Arxiv
9+阅读 · 2018年12月13日
Arxiv
22+阅读 · 2018年8月30日
VIP会员
相关资讯
NLP领域中的迁移学习现状
AI科技评论
7+阅读 · 2019年9月1日
【赠书】TensorFlow自然语言处理
AINLP
17+阅读 · 2019年7月14日
34篇最新论文带你快速跟进NLP领域技术(附下载)
一文了解自然语言生成演变史!
AI前线
5+阅读 · 2019年5月2日
了解情感分析中的NLP技术么?
七月在线实验室
9+阅读 · 2019年4月12日
基于深度学习的NLP 32页最新进展综述,190篇参考文献
人工智能学家
27+阅读 · 2018年12月4日
自然语言处理NLP快速入门
专知
20+阅读 · 2018年10月8日
相关论文
Arxiv
13+阅读 · 2020年4月12日
Arxiv
20+阅读 · 2019年9月7日
Arxiv
6+阅读 · 2019年8月22日
Arxiv
18+阅读 · 2019年1月16日
Arxiv
3+阅读 · 2018年12月18日
A Probe into Understanding GAN and VAE models
Arxiv
9+阅读 · 2018年12月13日
Arxiv
22+阅读 · 2018年8月30日
Top
微信扫码咨询专知VIP会员