数据科学概率导论

这本书是大学概率论的入门教材。它有一个使命: 阐明我们在科学和工程中使用的概率工具的动机、直觉和含义。从超过五年的课程教学中,我提炼出了我认为是概率方法的核心。我把这本书放在数据科学的背景下,以强调数据(计算)和概率(理论)在我们这个时代的不可分离性。

地址: https://probability4datascience.com/index.html

概率论是电子工程和计算机科学中最有趣的学科之一。它将我们喜爱的工程原理与现实联系起来,这是一个充满不确定性的世界。然而,因为概率是一门非常成熟的学科,单是本科生的课本就可能在图书馆的书架上摆满好几排书。当文学如此丰富时,挑战就变成了一个人如何在深入细节的同时洞察到洞察力。例如,你们中的许多人以前使用过正态随机变量,但你们是否想过“钟形”是从哪里来的?每一门概率课都会教你抛硬币,但是“抛硬币”在今天的机器学习中有什么用呢?数据科学家使用泊松随机变量来模拟互联网流量,但是这个漂亮的泊松方程是从哪里来的呢?这本书的目的是填补这些知识的差距,这是所有数据科学学生必不可少的。

这就引出了本书的三个目标。(i) 动机: 在数学定义、定理、方程的海洋中,为什么我们要把时间花在这个主题上,而不是其他的? (ii) 直觉: 当进行推导时,在这些方程之外是否有几何解释或物理学?(iii) 言外之意: 当我们学习了一个话题后,我们可以解决哪些新问题?本书的目标读者是电子工程和计算机科学专业的本科生三、四年级和一年级研究生。先决条件是标准的本科线性代数和微积分,除了需要傅里叶变换的特征函数部分。一门信号与系统的本科课程就足够了,即使是在学习这本书的同时选修。

这本书的篇幅适合两学期的课程。教师被鼓励使用最适合他们的课程的章节集。例如,基本概率课程可以使用第1-5章作为主干。关于样本统计的第6章适合希望获得概率收敛理论见解的学生。关于回归的第七章和关于估计的第八章最适合学习机器学习和信号处理的学生。第9章讨论了对现代数据分析至关重要的置信区间和假设检验。第10章介绍了随机过程。我的随机过程方法更适合于信息处理和通信系统,这通常与电气工程专业的学生更相关。

本书特色:

涵盖范围广,从经典的概率论到现代数据分析技术 概念的几何和图形解释 与MATLAB / Python紧密集成 机器学习的实际应用

目录内容

Chapter 1 Mathematical Background Chapter 2 Probability Chapter 3 Discrete Random Variables Chapter 4 Continuous Random Variables Chapter 5 Joint Distributions Chapter 6 Sample Statistics Chapter 7 Regression Chapter 8 Estimation Chapter 9 Confidence and Hypothesis Chapter 10 Random Processes

成为VIP会员查看完整内容
0
41

相关内容

数据科学(英語:data science)是一门利用数据学习知识的学科,其目标是通过从数据中提取出有价值的部分来生产数据产品。 它结合了诸多领域中的理论和技术,包括应用数学、统计、模式识别、机器学习、数据可视化、数据仓库以及高性能计算。 数据科学通过运用各种相关的数据来帮助非专业人士理解问题。

https://link.springer.com/book/10.1007/978-3-319-55444-0

这本引人入胜的和清晰的书面教科书/参考提供了一个必要的介绍,迅速兴起的跨学科领域的数据科学。它侧重于成为一名优秀的数据科学家的基本原则,以及建立收集、分析和解释数据的系统所需的关键技能。

《数据科学设计手册》是一个实用的见解来源,它突出了分析数据中真正重要的东西,并提供了对如何使用这些核心概念的直观理解。这本书没有强调任何特定的编程语言或数据分析工具套件,而是着重于重要设计原则的高层讨论。

《数据科学概论》是一门易于阅读的课程,理想情况下,它能满足本科生和早期研究生的需求。它揭示了这门学科如何处于统计学、计算机科学和机器学习的交叉点,具有自己独特的分量和特点。这些和相关领域的从业者会发现这本书非常适合自学。

成为VIP会员查看完整内容
0
17

从Facebook、万维网和互联网这样的社交网络,到我们身体细胞中蛋白质之间复杂的相互作用,我们不断面临着理解网络结构和发展的挑战。随机图的理论为这一理解提供了一个框架,在这本书中,作者对理解和应用这一理论的基本工具给出了细致的介绍。第一部分包括足够的材料,包括练习,一个学期的课程在高等本科或初级研究生水平。然后,读者为第二部分和第三部分更高级的主题做好了充分的准备。最后一部分提供了一个快速介绍所需的背景材料。所有那些对离散数学、计算机科学或应用概率及其应用感兴趣的人都会发现这是一个理想的入门课程。

https://www.cambridge.org/core/books/introduction-to-random-graphs/0F67A19795B731B0C97EAB5BB5748CF2#fndtn-information

成为VIP会员查看完整内容
0
40

本书通过探索经典多项式代数的发展过程和它在今天的存在方式,为我们提供了一个完整的、当代的视角。它促进了对代数的透彻理解,并说明了现代代数的概念最初是如何从古典代数的前身发展起来的。

它将提高代数技能。里面有许多课程可以帮助你更好地理解这个主题。这些经验教训是许多练习,以实践你所学到的,连同一个完整的答案关键,以测试你的工作。

它还提供内容集中在关键的主题,与离散的解释,在一个典型的代数课程中教授的关键概念,从函数和FOILs二次和线性方程。

在这本书中,你将学习这些术语来帮助你理解代数,并且你将通过几十个示例问题和它们的解决方案扩展你对这个主题的知识。在本书中,你会发现理解代数的概念比以往任何时候都要容易。

http://www.jonblakely.com/textbook/

成为VIP会员查看完整内容
0
24

作者是莫斯科国立大学数学教授Georgi E. Shilov,主要内容包括行列式,线性空间,线性方程组,向量自变量的线性函数,坐标变换,线性算子矩阵的规范形式,双线性和二次形式,欧几里德空间,酉空间,欧几里德和酉空间中的二次形式,有限维代数及其表示,并对有限维空间的类别进行了附录。

作者从初级材料开始,很容易进入高级领域,涵盖了所有高级本科生或研究生课程的标准主题。材料以一贯清晰的风格呈现。问题包括,一个完整的部分提示和答案在后面。

在他的方法中牢记代数、几何和分析的统一,并为需要学习技巧的学生写作,希洛夫教授在这个问题上做出了最好的阐述之一。因为它包含大量的问题和例子,这本书将是有用的自学和课堂。

成为VIP会员查看完整内容
0
32

这本书是哈佛大学Joseph K.Blitzstein 教授和斯坦福大学Jessica Hwang博士合著的新书《Introduction to probability》第二版预印版已公开。本书提供了对概率的介绍,并为理解统计、随机性和不确定性奠定了基础。

这本书提供了概率论的现代介绍,并为理解统计、随机性和不确定性奠定了基础。从基本的投币和巧合的研究到谷歌PageRank和马尔可夫链蒙特卡罗,本文探讨了各种应用和实例。由于概率论通常被认为是一门反直觉的学科,因此给出了许多直观的解释、图表和实践问题。每一章的结尾都有一节展示如何在统计计算和模拟的自由软件环境R中探索该章的思想。

概率论(英语:Probability theory)是集中研究概率及随机现象的数学分支,是研究随机性或不确定性等现象的数学。概率论主要研究对象为随机事件、随机变量以及随机过程。对于随机事件是不可能准确预测其结果的,然而对于一系列的独立随机事件——例如掷骰子、扔硬币、抽扑克牌以及轮盘等,会呈现出一定的、可以被用于研究及预测的规律,两个用来描述这些规律的最具代表性的数学结论分别是大数定律和中心极限定理。

二、主要内容 下面是这本书的一些目录: 第一章:概率和统计 第二章:条件概率 第三章:随机变量及其分布 第四章:期望 第五章:连续随机变量 第六章:时刻 第七章:联合分布 第八章:转换 第九章:条件期望 第十章:不等式和极限定理 第十一章:马尔可夫链 第十二章:马尔可夫链蒙特卡罗 第十三章:泊松过程 第十四章:数学

成为VIP会员查看完整内容
0
57

本书解释了数据科学中至关重要的统计学概念,介绍如何将各种统计方法应用于数据科学。作者以易于理解、浏览和参考的方式,引出统计学中与数据科学相关的关键概念;解释各统计学概念在数据科学中的重要性及有用程度,并给出原因。

统计方法是数据科学的关键部分,但很少有数据科学家有任何正式的统计培训。关于基本统计的课程和书籍很少从数据科学的角度涵盖这个主题。这本实用指南解释了如何将各种统计方法应用到数据科学中,告诉你如何避免它们被误用,并就什么是重要的、什么是不重要的给出建议。

许多数据科学资源包含了统计方法,但缺乏更深层次的统计视角。如果您熟悉R编程语言,并且对统计学有一定的了解,那么本文的快速引用将以一种可访问、可读的格式填补空白。

通过这本书,你会学到:

  • 为什么探索性数据分析是数据科学的一个关键的初步步骤
  • 随机抽样如何在大数据的情况下减少偏差并产生更高质量的数据集
  • 实验设计的原则如何为问题提供明确的答案
  • 如何使用回归估计结果和检测异常
  • 用于预测记录所属类别的关键分类技术
  • 从数据中“学习”的统计机器学习方法
  • 从无标记数据中提取意义的无监督学习方法

https://www.oreilly.com/library/view/practical-statistics-for/9781491952955/

成为VIP会员查看完整内容
0
49

概率论起源于17世纪的法国,当时两位伟大的法国数学家,布莱斯·帕斯卡和皮埃尔·德·费马,对两个来自机会博弈的问题进行了通信。帕斯卡和费马解决的问题继续影响着惠更斯、伯努利和DeMoivre等早期研究者建立数学概率论。今天,概率论是一个建立良好的数学分支,应用于从音乐到物理的学术活动的每一个领域,也应用于日常经验,从天气预报到预测新的医疗方法的风险。

本文是为数学、物理和社会科学、工程和计算机科学的二、三、四年级学生开设的概率论入门课程而设计的。它提出了一个彻底的处理概率的想法和技术为一个牢固的理解的主题必要。文本可以用于各种课程长度、水平和重点领域。

在标准的一学期课程中,离散概率和连续概率都包括在内,学生必须先修两个学期的微积分,包括多重积分的介绍。第11章包含了关于马尔可夫链的材料,为了涵盖这一章,一些矩阵理论的知识是必要的。

文本也可以用于离散概率课程。材料被组织在这样一种方式,离散和连续的概率讨论是在一个独立的,但平行的方式,呈现。这种组织驱散了对概率过于严格或正式的观点,并提供了一些强大的教学价值,因为离散的讨论有时可以激发更抽象的连续的概率讨论。在离散概率课程中,学生应该先修一学期的微积分。

为了充分利用文中的计算材料和例子,假设或必要的计算背景很少。所有在文本中使用的程序都是用TrueBASIC、Maple和Mathematica语言编写的。

成为VIP会员查看完整内容
0
65

这是一本专门为计算机科学学生设计的数学概率和统计课程的教科书。计算机科学的例子在整个领域被使用,例如:计算机网络;数据和文本挖掘;计算机安全;遥感;计算机性能评价;软件工程;数据管理;等。

为什么这本书不同于所有其他关于数学概率和统计的书?

首先,它强烈强调直觉,较少数学形式主义。根据我的经验,通过样本空间定义概率(标准方法)是做好应用工作的主要障碍。将期望值定义为加权平均值也是如此。相反,我使用一种直观、非正式的方法,即长期频率和长期平均值。我相信这在解释条件概率和期望时特别有用,这些概念往往是学生们难以理解的。(他们通常认为自己理解了,直到他们实际上必须使用这些概念来解决一个问题。)另一方面,尽管相对缺乏形式主义,所有的模型等都被精确地用随机变量和分布来描述。这部分内容实际上比这一层次上的大部分内容都更具有数学意义因为它广泛地使用了线性代数。

第二,这本书强调了现实世界的应用。类似的课本,尤其是Mitzenmacher写的那本优雅有趣的计算机科学学生的书,侧重于概率,事实上是离散概率。他们预期的“应用”类别是算法的理论分析。相反,我关注的是这些材料在现实世界中的实际使用;它更倾向于连续而不是离散,更倾向于统计领域而不是概率。鉴于“大数据”和机器学习如今在计算机应用中发挥着重要作用,这一点应被证明尤其有价值。

第三,非常强调建模。相当多的重点放在这样的问题上:在现实生活中,概率模型的真正含义是什么?如何选择模型?我们如何评估模型的实用价值?这方面非常重要,因此有一个单独的章节,叫做模型构建导论。贯穿全文,有相当多的讨论的现实意义的概率概念。

成为VIP会员查看完整内容
0
50

这本书的第五版继续讲述如何运用概率论来深入了解真实日常的统计问题。这本书是为工程、计算机科学、数学、统计和自然科学的学生编写的统计学、概率论和统计的入门课程。因此,它假定有基本的微积分知识。

第一章介绍了统计学的简要介绍,介绍了它的两个分支:描述统计学和推理统计学,以及这门学科的简短历史和一些人,他们的早期工作为今天的工作提供了基础。

第二章将讨论描述性统计的主题。本章展示了描述数据集的图表和表格,以及用于总结数据集某些关键属性的数量。

为了能够从数据中得出结论,有必要了解数据的来源。例如,人们常常假定这些数据是来自某个总体的“随机样本”。为了确切地理解这意味着什么,以及它的结果对于将样本数据的性质与整个总体的性质联系起来有什么意义,有必要对概率有一些了解,这就是第三章的主题。本章介绍了概率实验的思想,解释了事件概率的概念,并给出了概率的公理。

我们在第四章继续研究概率,它处理随机变量和期望的重要概念,在第五章,考虑一些在应用中经常发生的特殊类型的随机变量。给出了二项式、泊松、超几何、正规、均匀、伽玛、卡方、t和F等随机变量。

成为VIP会员查看完整内容
2
136

斯坦福大学Stephen Boyd教授与加州大学Lieven Vandenberghe教授合著的应用线性代数导论:向量、矩阵和最小二乘法《Introduction to Applied Linear Algebra – Vectors, Matrices, and Least Squares》在2018年由剑桥大学出版社发行,开源书包含19章,473页pdf,这本书的目的是提供一个介绍向量,矩阵,最小二乘方法,应用线性代数的基本主题。目标是让学生通俗易懂,入门学习。让学习者了解在包括数据拟合、机器学习和人工智能,断层、导航、图像处理、金融、和自动控制系统的应用。是一本不可多得好教材。​

Stephen P. Boyd是斯坦福大学电子工程Samsung 教授,信息系统实验室电子工程教授,斯坦福大学电子工程系系主任。他在管理科学与工程系和计算机科学系任职,是计算与数学工程研究所的成员。他目前的研究重点是凸优化在控制、信号处理、机器学习和金融方面的应用。 https://web.stanford.edu/~boyd/

Lieven Vandenberghe,美国加州大学洛杉矶分校电子与计算机工程系和数学系教授

这本书的目的是提供一个介绍向量,矩阵,最小二乘方法,应用线性代数的基本主题。我们的目标是让很少或根本没有接触过线性代数的学生快速学习,以及对如何使用它们在许多应用程序中, 包括数据拟合、机器学习和人工智能, 断层、导航、图像处理、金融、和自动控制系统。

读者所需要的背景知识是熟悉基本的数学符号。我们只在少数地方使用微积分,但它并不是一个关键的角色,也不是一个严格的先决条件。虽然这本书涵盖了许多传统上作为概率和统计的一部分来教授的话题,比如如何将数学模型与数据相匹配,但它并不需要概率和统计方面的知识或背景。

这本书涉及的数学比应用线性代数的典型文本还少。我们只使用线性代数中的一个理论概念,线性无关,和一个计算工具,QR分解;我们处理大多数应用程序的方法只依赖于一种方法,即最小二乘(或某种扩展)。从这个意义上说,我们的目标是知识经济:仅用一些基本的数学思想、概念和方法,我们就涵盖了许多应用。然而,我们所提供的数学是完整的,因为我们仔细地证明了每一个数学命题。然而,与大多数介绍性的线性代数文本不同,我们描述了许多应用程序,包括一些通常被认为是高级主题的应用程序,如文档分类、控制、状态估计和组合优化。

这本书分为三部分。第一部分向读者介绍向量,以及各种向量运算和函数,如加法、内积、距离和角度。我们还将描述如何在应用程序中使用向量来表示文档中的字数、时间序列、病人的属性、产品的销售、音轨、图像或投资组合。第二部分对矩阵也做了同样的处理,最终以矩阵的逆和求解线性方程的方法结束。第三部分,关于最小二乘,是回报,至少在应用方面。我们展示了近似求解一组超定方程的简单而自然的思想,以及对这一基本思想的一些扩展,可以用来解决许多实际问题。

成为VIP会员查看完整内容
0
168
小贴士
相关VIP内容
专知会员服务
17+阅读 · 9月16日
专知会员服务
24+阅读 · 7月17日
专知会员服务
49+阅读 · 2020年12月31日
专知会员服务
65+阅读 · 2020年11月25日
专知会员服务
136+阅读 · 2020年7月28日
相关论文
Sophie Hilgard,Nir Rosenfeld,Mahzarin R. Banaji,Jack Cao,David C. Parkes
0+阅读 · 9月15日
Yuxian Gu,Xu Han,Zhiyuan Liu,Minlie Huang
0+阅读 · 9月14日
Shujian Zhang,Chengyue Gong,Eunsol Choi
0+阅读 · 9月10日
Soroush Abbasi Koohpayegani,Ajinkya Tejankar,Hamed Pirsiavash
0+阅读 · 9月10日
Bernhard Schölkopf
10+阅读 · 2019年11月24日
Joseph Y. Halpern
5+阅读 · 2019年9月30日
Deep Learning for Generic Object Detection: A Survey
Li Liu,Wanli Ouyang,Xiaogang Wang,Paul Fieguth,Jie Chen,Xinwang Liu,Matti Pietikäinen
8+阅读 · 2018年9月6日
Pingping Zhang,Wei Liu,Huchuan Lu,Chunhua Shen
4+阅读 · 2018年2月19日
Top