目前面向异质图的图卷积神经网络普遍存在两个重要的不足:(1)大部分已有工作依赖用户人工输入一系列任务相关的元路径(Meta-path),这对于没有专业知识的用户来说是困难的。换句话说,已有方法无法有效地、灵活地从所有可能的元路径中自动挖掘出针对某个任务的最优元路径,这阻碍了模型的有效性和可解释性;(2)大部分已有方法在执行图卷积之前都需要执行额外的、耗时的预处理操作,这显著增加了模型的时间复杂度,限制了模型的伸缩性。为了解决上述两个问题,该论文提出了高效且可解释的异质图卷积神经网络ie-HGCN,其包含了投影,对象级聚合,类型级聚合三个关键步骤。该模型可以端到端地自动评估所有可能的元路径的重要性,在粗粒度和细粒度两个层面上发现对于当前任务最优的元路径。而且,提出的两层聚合架构也可以避免额外的预处理操作,从而降低了模型的时间复杂度。论文从理论上证明了ie-HGCN自动发现元路径的能力,分析了其与谱图卷积的联系,分析了其近似线性的时间复杂度。在四个真实网络数据集上的实验结果显示,ie-HGCN不仅能够取得优越的性能,而且可以有效地发现元路径。

成为VIP会员查看完整内容
26

相关内容

异质信息网络是一种信息网络,包含了节点和边,并且该节点和边具有一种或多种类型,异质信息网络包含了更更丰富的语义信息。

信息网络被定义为一个有向网络图G=(V,E),其中,V是所有实体结点的集合,E是所有关系边的集合。并且存在着一个结点类型的映射函数φ:V→A和一个边类型的映射函数Ψ:E→R,对于每个对象v∈V属于一种特殊的对象类型φ(v)∈A,每个链接e∈E属于一种特殊的关系类型Ψ(e)∈R,那么这种网络类型就是信息网络。当对象类型的种类|A|>1或者关系类型的种类|R|>1时,这种信息网络是异质信息网络,否则,它是一种同质信息网络

专知会员服务
49+阅读 · 2021年6月2日
专知会员服务
37+阅读 · 2021年4月25日
专知会员服务
39+阅读 · 2021年4月5日
【WWW2021】自监督学习上下文嵌入的异构网络链接预测
专知会员服务
39+阅读 · 2021年2月10日
【AAAI2021】面向交通需求预测的耦合层图卷积
专知会员服务
45+阅读 · 2021年1月31日
【NeurIPS 2020】图神经网络GNN架构设计
专知会员服务
82+阅读 · 2020年11月19日
TKDE 2020 | 面向严格冷启动推荐的属性图神经网络
PaperWeekly
13+阅读 · 2020年12月18日
【NeurIPS2019】图变换网络:Graph Transformer Network
HAN:基于双层注意力机制的异质图深度神经网络
PaperWeekly
36+阅读 · 2019年4月23日
北大、微软亚洲研究院:高效的大规模图神经网络计算
深度学习世界
4+阅读 · 2018年10月31日
Arxiv
15+阅读 · 2021年6月27日
Arxiv
19+阅读 · 2020年7月13日
Arxiv
3+阅读 · 2020年4月29日
Self-Attention Graph Pooling
Arxiv
13+阅读 · 2019年6月13日
Arxiv
15+阅读 · 2019年4月4日
VIP会员
相关VIP内容
专知会员服务
49+阅读 · 2021年6月2日
专知会员服务
37+阅读 · 2021年4月25日
专知会员服务
39+阅读 · 2021年4月5日
【WWW2021】自监督学习上下文嵌入的异构网络链接预测
专知会员服务
39+阅读 · 2021年2月10日
【AAAI2021】面向交通需求预测的耦合层图卷积
专知会员服务
45+阅读 · 2021年1月31日
【NeurIPS 2020】图神经网络GNN架构设计
专知会员服务
82+阅读 · 2020年11月19日
相关论文
微信扫码咨询专知VIP会员