大模型如何做检索?WWW2024教程《生成式信息检索》附115页ppt

生成式检索(Generative Retrieval,GR)已经成为信息检索(Information Retrieval,IR)领域的一个高度活跃的研究方向,并且最近取得了显著的发展。与传统的“索引-检索-再排序”流程相比,GR范式旨在将语料库中的所有信息整合到一个单一模型中。通常情况下,训练一个序列到序列模型,以直接将查询映射到其相关的文档标识符(即docids)。本教程介绍了GR范式的核心概念,并全面概述了其基础和应用方面的最新进展。

我们首先提供了涵盖GR基础方面和问题表述的初步信息。接着,我们将重点转向docid设计、训练方法、推理策略和GR应用的最新进展。最后,我们概述了尚存的挑战并呼吁未来的GR研究。本教程旨在对有兴趣开发新型GR解决方案或在实际场景中应用GR的研究人员和行业从业者有所帮助。

https://thewebconf2024-generative-ir.github.io/

成为VIP会员查看完整内容
32

相关内容

【MLSS2024教程】大型语言模型,150页ppt
专知会员服务
98+阅读 · 3月16日
基于模型的强化学习综述
专知
33+阅读 · 2022年7月13日
专栏 | 手把手教你用DGL框架进行批量图分类
机器之心
14+阅读 · 2019年1月29日
300页文本知识提取与推断最新教程
机器学习算法与Python学习
13+阅读 · 2018年8月28日
干货|EM算法原理总结
全球人工智能
17+阅读 · 2018年1月10日
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2016年12月31日
国家自然科学基金
6+阅读 · 2015年12月31日
国家自然科学基金
10+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
Arxiv
158+阅读 · 2023年4月20日
A Survey of Large Language Models
Arxiv
407+阅读 · 2023年3月31日
Arxiv
68+阅读 · 2023年3月26日
Arxiv
146+阅读 · 2023年3月24日
Arxiv
21+阅读 · 2023年3月17日
VIP会员
相关VIP内容
【MLSS2024教程】大型语言模型,150页ppt
专知会员服务
98+阅读 · 3月16日
相关基金
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2016年12月31日
国家自然科学基金
6+阅读 · 2015年12月31日
国家自然科学基金
10+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
微信扫码咨询专知VIP会员