图结构数据在现实生活中无处不在,它出现在许多学习应用中,如分子图的属性预测、异构信息网络的产品推荐和知识图的逻辑查询。近年来,从图结构数据中学习也成为机器学习领域的一个研究热点。然而,同样由于GSD中的这种多样性,没有一个通用的学习模型能够基于图在不同的学习应用程序中表现良好和一致。与此形成鲜明对比的是,卷积神经网络在自然图像上工作得很好,而Transformers 是文本数据的好选择。在本教程中,我们将讨论如何使用自动机器学习(AutoML)作为一个工具来为GSD设计学习模型。具体来说,我们将详细说明什么是AutoML, AutoML可以从图中探索什么样的先验信息,以及如何从搜索的模型中生成洞察力。